914 resultados para Computer Supported Cooperative Work (CSCW)
Resumo:
Title Varies: a Report on the Receipts, Expenditures, and Results of Cooperative Extension Work In Agriculture and Home Economics In the U.S; Cooperative Extension Work In Agriculture and Home Economics; Report on Cooperative Extension Work In Agriculture and Home Economics
Resumo:
Cooperative, small-group learning is widely recognised as a pedagogical practice that promotes learning and socialisation across a range of curriculum areas from primary school through to high school and college. When children work cooperatively together, they learn to give and receive help, share their ideas and listen to other students’ perspectives, seek new ways of clarifying differences, resolving problems, and constructing new understandings and knowledge. The result is that students attain higher academic outcomes and are more motivated to achieve than they would be if they worked alone. This paper provides an overview of five different studies that the author has conducted that demonstrate clearly the importance of explicitly structuring cooperative small-group work in classrooms if children are to derive the benefits widely attributed to this pedagogical practice.
Resumo:
This paper argues for a more specific formal methodology for the textual analysis of individual game genres. In doing so, it advances a set of formal analytical tools and a theoretical framework for the analysis of turn-based computer strategy games. The analytical tools extend the useful work of Steven Poole, who suggests a Peircian semiotic approach to the study of games as formal systems. The theoretical framework draws upon postmodern cultural theory to analyse and explain the representation of space and the organisation of knowledge in these games. The methodology and theoretical framework is supported by a textual analysis of Civilization II, a significant and influential turn-based computer strategy game. Finally, this paper suggests possibilities for future extensions of this work.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.
Resumo:
We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.
Resumo:
The purpose of this study was to determine if there was a difference in the self-determined evaluations of work performance and support needs by adults with mental retardation in supported employment and in sheltered workshop environments. The instrument, Job Observation and Behavior Scale: Opportunity for Self-Determination (JOBS: OSD; Brady, Rosenberg, & Frain, 2006), was administered to 38 adults with mental retardation from sheltered workshops and 32 adults with mental retardation from supported employment environments. Cross-tabulations with Chi-square tests and independent samples t-tests were conducted to evaluate differences between the two groups, sheltered workshop and supported work. Two Multivariate Analyses of Variance (MANOVAs) were conducted to determine the effect of work environment on Quality of Performance (QP) and Types of Support (TS) test scores and their subscales. ^ This study found that there were significant differences between the groups on the QP Behavior and Job Duties subscales. The sheltered workshop group perceived themselves as performing significantly better on job duties than the supported work group. Conversely, the supported work group perceived themselves to have better behavior than the sheltered workshop group. However, there were no significant differences between groups in their perception of support needs for the three subscales. ^ The findings imply that work environment affects the self-determined evaluations of work performance by adults with mental retardation. Recommendations for further study include (a) detailing the characteristics of supported work and sheltered workshops that support and/or discourage self-determined behaviors, (b) exploring the behavior of adults with mental retardation in sheltered workshops and supported work environments, and (c) analysis of the support needs for and understanding of them by adults with mental retardation in sheltered workshops and in supported work environments. ^
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
Participation Space Studies explore eParticipation in the day-to-day activities of local, citizen-led groups, working to improve their communities. The focus is the relationship between activities and contexts. The concept of a participation space is introduced in order to reify online and offline contexts where people participate in democracy. Participation spaces include websites, blogs, email, social media presences, paper media, and physical spaces. They are understood as sociotechnical systems: assemblages of heterogeneous elements, with relevant histories and trajectories of development and use. This approach enables the parallel study of diverse spaces, on and offline. Participation spaces are investigated within three case studies, centred on interviews and participant observation. Each case concerns a community or activist group, in Scotland. The participation spaces are then modelled using a Socio-Technical Interaction Network (STIN) framework (Kling, McKim and King, 2003). The participation space concept effectively supports the parallel investigation of the diverse social and technical contexts of grassroots democracy and the relationship between the case-study groups and the technologies they use to support their work. Participants’ democratic participation is supported by online technologies, especially email, and they create online communities and networks around their goals. The studies illustrate the mutual shaping relationship between technology and democracy. Participants’ choice of technologies can be understood in spatial terms: boundaries, inhabitants, access, ownership, and cost. Participation spaces and infrastructures are used together and shared with other groups. Non-public online spaces, such as Facebook groups, are vital contexts for eParticipation; further, the majority of participants’ work is non-public, on and offline. It is informational, potentially invisible, work that supports public outputs. The groups involve people and influence events through emotional and symbolic impact, as well as rational argument. Images are powerful vehicles for this and digital images become an increasingly evident and important feature of participation spaces throughout the consecutively conducted case studies. Collaboration of diverse people via social media indicates that these spaces could be understood as boundary objects (Star and Griesemer, 1989). The Participation Space Studies draw from and contribute to eParticipation, social informatics, mediation, social shaping studies, and ethnographic studies of Internet use.
Resumo:
Part 18: Optimization in Collaborative Networks
Resumo:
Since children already use and explore applications on smartphones, we use this as the starting point for design. Our monitoring and analysis framework, BaranC, enables us to discover and analyse which applications children uses and precisely how they interact with them. The monitoring happens unobtrusively in the background so children interact normally in their own natural environment without artificial constraints. Thus, we can discover to what extent a child of a particular age engages with, and how they physically interact with, existing applications. This information in turn provides the basis for design of new child-centred applications which can then be subject to the same comprehensive child use analysis using our framework. The work focuses on the first aspect, namely, the monitoring and analysis of current child use of smartphones. Experiments show the value of this approach and interesting results have been obtained from this precise monitoring of child smartphone usage.
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.