991 resultados para Caldwell, Sarah , 1924-2006
Resumo:
Consultoria de Orçamento e Fiscalização Financeira. Núcleo Poderes, Justiça, Relações Exteriores, Defesa e Despesa Pessoal
Resumo:
The Final National Workshop was held from 30-31 October 2006 in Islamabad, Pakistan, with the objectives to:
Resumo:
Esta Nota Técnica tem por objetivo atender solicitação do Deputado Édio Lopes, relator da Comissão Especial que analisa a Proposta de Emenda à Constituição nº 565-A, de 2006, que “Altera os arts. 57, 165, 166, e acrescenta art. 165-A, todos da Constituição Federal, tornando de execução obrigatória a programação constante da lei orçamentária anual”.
Resumo:
(PDF contains 153 pages.)
Resumo:
Folgende Kernbehauptungen bzw. Hypothesen werden in dem Worm-et-al.-Artikel aufgestellt: -Der Verlust an Biodiversität (Artenzahl) in einem Meeresgebiet reduziert tief greifend seine Produktivität und seine Stabilität in Stressperioden, hervorgerufen u.a. durch Überfischung und Klimaänderung. -Die Zahl der kollabierten Arten nimmt zu. Dieser Trend projeziert den Kollaps aller wildlebenden Arten und Bestände, die gegenwärtig befischt werden, auf das Jahr 2048. -Diese Entwicklung ist zum gegenwärtigen Zeitpunkt reversibel, denn das Meer besitzt noch ein großes Potential sich zu regenerieren. Dazu ist aber mehr Umweltschutz notwendig.
Resumo:
The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT. An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters. In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop. This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]
Resumo:
The ACT workshop "Enabling Sensor Interoperability" addressed the need for protocols at the hardware, firmware, and higher levels in order to attain instrument interoperability within and between ocean observing systems. For the purpose of the workshop, participants spoke in tern of "instruments" rather than "sensors," defining an instrument as a device that contains one or more sensors or actuators and can convert signals from analog to digital. An increase in the abundance, variety, and complexity of instruments and observing systems suggests that effective standards would greatly improve "plug-and-work" capabilities. However, there are few standards or standards bodies that currently address instrument interoperability and configuration. Instrument interoperability issues span the length and breadth of these systems, from the measurement to the end user, including middleware services. There are three major components of instrument interoperability including physical, communication, and application/control layers. Participants identified the essential issues, current obstacles, and enabling technologies and standards, then came up with a series of short and long term solutions. The top three recommended actions, deemed achievable within 6 months of the release of this report are: A list of recommendations for enabling instrument interoperability should be put together and distributed to instrument developers. A recommendation for funding sources to achieve instrument interoperability should be drafted. Funding should be provided (for example through NOPP or an IOOS request for proposals) to develop and demonstrate instrument interoperability technologies involving instrument manufacturers, observing system operators, and cyberinfrastructure groups. Program managers should be identified and made to understand that milestones for achieving instrument interoperability include a) selection of a methodology for uniquely identifying an instrument, b) development of a common protocol for automatic instrument discovery, c) agreement on uniform methods for measurements, d) enablement of end user controlled power cycling, and e) implementation of a registry component for IDS and attributes. The top three recommended actions, deemed achievable within S years of the release of this report are: An ocean observing interoperability standards body should be established that addresses standards for a) metadata, b) commands, c) protocols, d) processes, e) exclusivity, and f) naming authorities.[PDF contains 48 pages]
Resumo:
The use of self-contained, low-maintenance sensor systems installed on commercial vessels is becoming an important monitoring and scientific tool in many regions around the world. These systems integrate data from meteorological and water quality sensors with GPS data into a data stream that is automatically transferred from ship to shore. To begin linking some of this developing expertise, the Alliance for Coastal Technologies (ACT) and the European Coastal and Ocean Observing Technology (ECOOT) organized a workshop on this topic in Southampton, United Kingdom, October 10-12, 2006. The participants included technology users, technology developers, and shipping representatives. They collaborated to identify sensors currently employed on integrated systems, users of this data, limitations associated with these systems, and ways to overcome these limitations. The group also identified additional technologies that could be employed on future systems and examined whether standard architectures and data protocols for integrated systems should be established. Participants at the workshop defined 17 different parameters currently being measured by integrated systems. They identified that diverse user groups utilize information from these systems from resource management agencies, such as the Environmental Protection Agency (EPA), to local tourism groups and educational organizations. Among the limitations identified were instrument compatibility and interoperability, data quality control and quality assurance, and sensor calibration andlor maintenance frequency. Standardization of these integrated systems was viewed to be both advantageous and disadvantageous; while participants believed that standardization could be beneficial on many levels, they also felt that users may be hesitant to purchase a suite of instruments from a single manufacturer; and that a "plug and play" system including sensors from multiple manufactures may be difficult to achieve. A priority recommendation and conclusion for the general integrated sensor system community was to provide vessel operators with real-time access to relevant data (e.g., ambient temperature and salinity to increase efficiency of water treatment systems and meteorological data for increased vessel safety and operating efficiency) for broader system value. Simplified data displays are also required for education and public outreach/awareness. Other key recommendations were to encourage the use of integrated sensor packages within observing systems such as 100s and EuroGOOS, identify additional customers of sensor system data, and publish results of previous work in peer-reviewed journals to increase agency and scientific awareness and confidence in the technology. Priority recommendations and conclusions for ACT entailed highlighting the value of integrated sensor systems for vessels of opportunity through articles in the popular press, and marine science. [PDF contains 28 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
The co-organized Alliance for Coastal Technologies (ACT) and National Data Buoy Center (NDBC) Workshop "Meteorological Buoy Sensors Workshop" convened in Solomons, Maryland, April 19 to 21,2006, sponsored by the University of Maryland Center for Environmental Science (UMCES) Chesapeake Bay Laboratory (CBL), an ACT partner institution. Participants from various sectors including resource managers and industry representatives collaborated to focus on technologies and sensors that measure the near surface variables of wind speed and direction, barometric pressure, humidity and air temperature. The vendor list was accordingly targeted at companies that produced these types of sensors. The managers represented a cross section of federal, regional and academic marine observing interests from around the country. Workshop discussions focused on the challenges associated with making marine meteorological observations in general and problems that were specific to a particular variable. Discussions also explored methods to mitigate these challenges through the adoption of best practices, improved technologies and increased standardization. Some of the key workshop outcomes and recommendations included: 0cean.US should establish a committee devoted to observations. The committee would have a key role in developing observing standards. The community should adopt the target cost, reliability and performance standards drafted for a typical meteorological package to be used by a regional observing system. A forum should be established to allow users and manufacturers to share best practices for the employment of marine meteorological sensors. The ACT website would host the forum. Federal activities that evaluate meteorological sensors should make their results publicly available. ACT should extend their evaluation process to include meteorological sensors. A follow on workshop should be conducted that covers the observing of meteorological variables not addressed by this workshop. (pdf contains 18 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Optical Remote Sensing of Coastal Habitats was convened January 9-11, 2006 at Moss Landing Marine Laboratories in Moss Landing, California, sponsored by the ACT West Coast regional partnership comprised of the Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). The "Optical Remote Sensing of Coastal Habitats" (ORS) Workshop completes ACT'S Remote Sensing Technology series by building upon the success of ACT'S West Coast Regional Partner Workshop "Acoustic Remote Sensing Technologies for Coastal Imaging and Resource Assessment" (ACT 04-07). Drs. Paul Bissett of the Florida Environmental Research Institute (FERI) and Scott McClean of Satlantic, Inc. were the ORS workshop co-chairs. Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the role of ORS technologies in coastal resource assessment and management. The workshop was organized to examine the current state of multi- and hyper-spectral imaging technologies with the intent to assess the current limits on their routine application for habitat classification and resource monitoring of coastal watersheds, nearshore shallow water environments, and adjacent optically deep waters. Breakout discussions focused on the capabilities, advantages ,and limitations of the different technologies (e.g., spectral & spatial resolution), as well as practical issues related to instrument and platform availability, reliability, hardware, software, and technical skill levels required to exploit the data products generated by these instruments. Specifically, the participants were charged to address the following: (1) Identify the types of ORS data products currently used for coastal resource assessment and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (2) Identify barriers and challenges to the application of ORS technologies in management and research activities; (3) Recommend a series of community actions to overcome identified barriers and challenges. Plenary presentations by Drs. Curtiss 0. Davis (Oregon State University) and Stephan Lataille (ITRES Research, Ltd.) provided background summaries on the varieties of ORS technologies available, deployment platform options, and tradeoffs for application of ORS data products with specific applications to the assessment of coastal zone water quality and habitat characterization. Dr. Jim Aiken (CASIX) described how multiscale ground-truth measurements were essential for developing robust assessment of modeled biogeochemical interpretations derived from optically based earth observation data sets. While continuing improvements in sensor spectral resolution, signal to noise and dynamic range coupled with sensor-integrated GPS, improved processing algorithms for georectification, and atmospheric correction have made ORS data products invaluable synoptic tools for oceanographic research, their adoption as management tools has lagged. Seth Blitch (Apalachicola National Estuarine Research Reserve) described the obvious needs for, yet substantial challenges hindering the adoption of advanced spectroscopic imaging data products to supplement the current dominance of digital ortho-quad imagery by the resource management community, especially when they impinge on regulatory issues. (pdf contains 32 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen Measurements Routine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. This event was sponsored by the University of South Florida (USF) College of Marine Science, an ACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks (ORION). Participants from researcldacademia, resource management, industry, and engineering sectors collaborated with the aim to foster ideas and information on how to make measuring dissolved oxygen a routine part of a coastal or open ocean observing system. Plans are in motion to develop large scale ocean observing systems as part of the US Integrated Ocean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative (001; see http://www.orionprogram.org/00I/default.hl). These systems will require biological and chemical sensors that can be deployed in large numbers, with high reliability, and for extended periods of time (years). It is also likely that the development cycle for new sensors is sufficiently long enough that completely new instruments, which operate on novel principles, cannot be developed before these complex observing systems will be deployed. The most likely path to development of robust, reliable, high endurance sensors in the near future is to move the current generation of sensors to a much greater degree of readiness. The ACT Oxygen Sensor Technology Evaluation demonstrated two important facts that are related to the need for sensors. There is a suite of commercially available sensors that can, in some circumstances, generate high quality data; however, the evaluation also showed that none of the sensors were able to generate high quality data in all circumstances for even one month time periods due to biofouling issues. Many groups are attempting to use oxygen sensors in large observing programs; however, there often seems to be limited communication between these groups and they often do not have access to sophisticated engineering resources. Instrument manufacturers also do not have sufficient resources to bring sensors, which are marketable, but of limited endurance or reliability, to a higher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bring together a group of experienced oceanographers who are now deploying oxygen sensors in extended arrays along with a core of experienced and interested academic and industrial engineers, and manufacturers. The intended direction for this workshop was for this group to exchange information accumulated through a variety of sensor deployments, examine failure mechanisms and explore a variety of potential solutions to these problems. One anticipated outcome was for there to be focused recommendations to funding agencies on development needs and potential solutions for 02 sensors. (pdf contains 19 pages)
Resumo:
10 cartas (manuscritas y mecanografiadas) ; entre 335x227mm y 134x201mm. Ubicación: Caja 1 - Carpeta 33
Resumo:
10 cartas (manuscritas y mecanografiadas) ; entre 213x203mm y 335x227mm. Ubicación: Caja 1 - Carpeta 33
Resumo:
3 cartas (manuscritas) ; entre 210x215mm y 250x207mm. Caja 1 - Carpeta 44