963 resultados para signal processing in the encrypted domain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the awareness-raising efforts of several high-profile current and former athletes, the issue of common mental disorders (CMD) in this population is gaining increasing attention from researchers and practitioners alike. Yet the prevalence is unclear and most likely, under-reported. Whilst the characteristics of the sporting environment may generate CMD within the athletic population, it also may exacerbate pre-existing conditions, and hence it is not surprising that sport psychology and sport science practitioners are anecdotally reporting increased incidences of athletes seeking support for CMDs. In a population where there are many barriers to reporting and seeking help for CMD, due in part to the culture of the high performance sporting environment, anecdotal reports suggest that those athletes asking for help are approaching personnel who they are most comfortable talking to. In some cases, this may be a sport scientist, the sport psychologist or sport psychology consultant. Among personnel in the sporting domain, there is a perception that the sport psychologist or sport psychology consultant is best placed to assist athletes seeking assistance for CMD. However, sport psychology as a profession is split by two competing philosophical perspectives; one of which suggests that sport psychologists should work exclusively with athletes on performance enhancement, and the other views the athlete more holistically and accepts that their welfare may directly impact on their performance. To add further complication, the development of the profession of sport psychology varies widely between countries, meaning that practice in this field is not always clearly defined. This article examines case studies that illustrate the blurred lines in applied sport psychology practice, highlighting challenges with the process of referral in the U.K. athletic population. The article concludes with suggestions for ensuring the field of applied sport psychology is continually evolving and reconfiguring to ensure that it continues to meet the demands of its clients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of Bitcoin suggested a disintermediated economy in which Internet users can take part directly. The conceptual disruption brought about by this Internet of Money (IoM) mirrors the cross-industry impacts of blockchain and distributed ledger technologies (DLTs). While related instances of non-centralisation thwart regulatory efforts to establish accountability, in the financial domain further challenges arise from the presence in the IoM of two seemingly opposing traits: anonymity and transparency. Indeed, DLTs are often described as architecturally transparent, but the perceived level of anonymity of cryptocurrency transfers fuels fears of illicit exploitation. This is a primary concern for the framework to prevent money laundering and the financing of terrorism and proliferation (AML/CFT/CPF), and a top priority both globally and at the EU level. Nevertheless, the anonymous and transparent features of the IoM are far from clear-cut, and the same is true for its levels of disintermediation and non-centralisation. Almost fifteen years after the first Bitcoin transaction, the IoM today comprises a diverse set of socio-technical ecosystems. Building on an analysis of their phenomenology, this dissertation shows how there is more to their traits of anonymity and transparency than it may seem, and how these features range across a spectrum of combinations and degrees. In this context, trade-offs can be evaluated by referring to techno-legal benchmarks, established through socio-technical assessments grounded on teleological interpretation. Against this backdrop, this work provides framework-level recommendations for the EU to respond to the twofold nature of the IoM legitimately and effectively. The methodology cherishes the mutual interaction between regulation and technology when drafting regulation whose compliance can be eased by design. This approach mitigates the risk of overfitting in a fast-changing environment, while acknowledging specificities in compliance with the risk-based approach that sits at the core of the AML/CFT/CPF regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O projeto realizado teve como tema a aplicação das derivadas e integrais fraccionários para a implementação de filtros digitais numa perspetiva de processamento digital de sinais. Numa primeira fase do trabalho, é efetuado uma abordagem teórica sobre os filtros digitais e o cálculo fraccionário. Estes conceitos teóricos são utilizados posteriormente para o desenvolvimento do presente projeto. Numa segunda fase, é desenvolvida uma interface gráfica em ambiente MatLab, utilizando a ferramenta GUIDE. Esta interface gráfica tem como objetivo a implementação de filtros digitais fraccionários. Na terceira fase deste projeto são implementados os filtros desenvolvidos experimentalmente através do ADSP-2181, onde será possível analisar e comparar os resultados experimentais com os resultados obtidos por simulação no MatLab. Como quarta e última fase deste projeto é efetuado uma reflexão sobre todo o desenvolvimento da Tese e o que esta me proporcionou. Com este relatório pretendo apresentar todo o esforço aplicado na realização deste trabalho, bem como alguns dos conhecimentos adquiridos ao longo do curso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a mathematical fundament for digital signal processing under point view of interval mathematics. Intend treat the open problem of precision and repesention of data in digital systems, with a intertval version of signals representation. Signals processing is a rich and complex area, therefore, this work makes a cutting with focus in systems linear invariant in the time. A vast literature in the area exists, but, some concepts in interval mathematics need to be redefined or to be elaborated for the construction of a solid theory of interval signal processing. We will construct a basic fundaments for signal processing in the interval version, such as basic properties linearity, stability, causality, a version to intervalar of linear systems e its properties. They will be presented interval versions of the convolution and the Z-transform. Will be made analysis of convergences of systems using interval Z-transform , a essentially interval distance, interval complex numbers , application in a interval filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most electronic systems can be described in a very simplified way as an assemblage of analog and digital components put all together in order to perform a certain function. Nowadays, there is an increasing tendency to reduce the analog components, and to replace them by operations performed in the digital domain. This tendency has led to the emergence of new electronic systems that are more flexible, cheaper and robust. However, no matter the amount of digital process implemented, there will be always an analog part to be sorted out and thus, the step of converting digital signals into analog signals and vice versa cannot be avoided. This conversion can be more or less complex depending on the characteristics of the signals. Thus, even if it is desirable to replace functions carried out by analog components by digital processes, it is equally important to do so in a way that simplifies the conversion from digital to analog signals and vice versa. In the present thesis, we have study strategies based on increasing the amount of processing in the digital domain in such a way that the implementation of analog hardware stages can be simplified. To this aim, we have proposed the use of very low quantized signals, i.e. 1-bit, for the acquisition and for the generation of particular classes of signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information extraction is a frequent and relevant problem in digital signal processing. In the past few years, different methods have been utilized for the parameterization of signals and the achievement of efficient descriptors. When the signals possess statistical cyclostationary properties, the Cyclic Autocorrelation Function (CAF) and the Spectral Cyclic Density (SCD) can be used to extract second-order cyclostationary information. However, second-order cyclostationary information is poor in nongaussian signals, as the cyclostationary analysis in this case should comprise higher-order statistical information. This paper proposes a new mathematical tool for the higher-order cyclostationary analysis based on the correntropy function. Specifically, the cyclostationary analysis is revisited focusing on the information theory, while the Cyclic Correntropy Function (CCF) and Cyclic Correntropy Spectral Density (CCSD) are also defined. Besides, it is analytically proven that the CCF contains information regarding second- and higher-order cyclostationary moments, being a generalization of the CAF. The performance of the aforementioned new functions in the extraction of higher-order cyclostationary characteristics is analyzed in a wireless communication system where nongaussian noise exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies imply that the intracellular domain of Notch1 must translocate to the nucleus for its activity. In this study, we demonstrate that a mNotch1 mutant protein that lacks its extracellular domain but retains its membrane-spanning region becomes proteolytically processed on its intracellular surface and, as a result, the activated intracellular domain (mNotchIC) is released and can move to the nucleus. Proteolytic cleavage at an intracellular site is blocked by protease inhibitors. Intracellular cleavage is not seen in cells transfected with an inactive variant, which includes the extracellular lin-Notch-glp repeats. Collectively, the studies presented here support the model that mNotch1 is proteolytically processed and the cleavage product is translocated to the nucleus for mNotch1 signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a new technique of all-optical nonlinear pulse processing for use at a RZ optical receiver, which is based on an AM or any device with a similar function of temporal gating/slicing enhanced by the effect of Kerr nonlinearity in a NDF. The efficiency of the technique has been demonstrated by application to timing jitter and noise-limited RZ transmission at 40 Gbit/s. Substantial suppression of the signal timing jitter and overall improvement of the receiver performance has been demonstrated using the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This volume is based upon the 2nd IEEE European Workshop on Computer-Intensive Methods in Control and Signal Processing, held in Prague, August 1996.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of the schizont stage of the obligate intracellular parasites Theileria parva or T. annulata in the cytoplasm of an infected leukocyte results in host cell transformation via a mechanism that has not yet been elucidated. Proteins, secreted by the schizont, or expressed on its surface, are of interest as they can interact with host cell molecules that regulate host cell proliferation and/or survival. The major schizont surface protein is the polymorphic immunodominant molecule, PIM, which contains a large glutamine- and proline-rich domain (QP-rd) that protrudes into the host cell cytoplasm. Analyzing QP-rd generated by in vitro transcription/translation, we found that the signal peptide was efficiently cleaved post-translationally upon addition of T cell lysate or canine pancreatic microsomes, whereas signal peptide cleavage of a control protein only occurred cotranslationally and in the presence of microsomal membranes. The QP-rd of PIM migrated anomalously in SDS-PAGE and removal of the 19 amino acids corresponding to the predicted signal peptide caused a decrease in apparent molecular mass of 24kDa. The molecule was analyzed using monoclonal antibodies that recognize a set of previously defined PIM epitopes. Depending on the presence or the absence of the signal peptide, two conformational states could be demonstrated that are differentially recognized, with N-terminal epitopes becoming readily accessible upon signal peptide removal, and C-terminal epitopes becoming masked. Similar observations were made when the QP-rd of PIM was expressed in bacteria. Our observations could also be of relevance to other schizont proteins. A recent analysis of the proteomes of T. parva and T. annulata revealed the presence of a large family of potentially secreted proteins, characterized by the presence of large stretches of amino acids that are also particularly rich in QP-residues.