990 resultados para radical reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concise, convergent synthesis of (±)-frondosin B has been developed based on the application of a Stille–Heck reaction sequence of 2-chloro-5-methoxybenzo[b]furan-3-yl triflate and 2-(3-butenyl)-3-(trimethylstannyl)cyclohex-2-enone giving the racemic natural product in a 34% overall yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we provide an account-centric analysis of the tweeting activity of, and public response to, Pope Benedict XVI via the @pontifex Twitter account(s). We focus our investigation on the particular phase around Pope Benedict XVI’s resignation to generate insights into the use of Twitter in response to a celebrity crisis event. Through a combined qualitative and quantitative methodological approach we generate an overview of the follower-base and tweeting activity of the @pontifex account. We identify a very one-directional communication pattern (many @mentions by followers yet zero @replies from the papal account itself), which prompts us to enquire further into what the public resonance of the @pontifex account is. We also examine reactions to the resurrection of the papal Twitter account by Pope Benedict XVI’s successor. In this way, we provide a comprehensive analysis of the public response to the immediate events around the crisis event of Pope Benedict XVI’s resignation and its aftermath via the network of users involved in the @pontifex account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential and one-pot Stille–Heck and Heck–Stille reaction processes have been invoked to give divergent access to polycyclic ring systems. Both reaction conditions and substrate structure are important in determining the nature of the reaction products formed. The Heck–Stille reactions have involved a reversal of the usual Heck regioselectivity and both cine- and ipso-substitutions have been observed in the Stille reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion-molecule reactions between molecular oxygen and peptide radicals in the gas phase demonstrate that radical migration occurs easily within large biomolecules without addition of collisional activation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. . The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical investigation of the behaviour of fuel injection through a porous surface in an inlet-fuelled, radial-farming scramjet is presented. The performance of porous fuel injection is compared to discrete port hole injection at an equivalence ratio of φ ≈ 0.4 for both cases. The comparison is performed at a Mach 6.5 flow condition with a total specific enthalpy of 4.3 MJ/kg. The numerical results are compared to experiments performed in the T4 shock tunnel where available. The presented results demonstrate for the first time, that porous fuel injection has the potential to outperform port hole injectors in scramjet engines in terms of fuel-air mixing, ignition delays and achievable combustion efficiencies despite reduced fuel penetration heights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the experimental testing of oxygen compatible ceramic matrix composite porous injectors in a nominally two-dimensional hydrogen fuelled and oxygen enriched radical farming scramjet in the T4 shock tunnel facility. All experiments were performed at a dynamic pressure of 146 kPa, an equivalent flight Mach number of 9.7, a stagnation pressure and enthalpy of 40MPa and 4.3 MJ/kg respectively and at a fuelling condition that resulted in an average equivalence ratio of 0.472. Oxygen was pre-mixed with the fuel prior to injection to achieve enrichment percentages of approximately 13%, 15% and 17%. These levels ensured that the hydrogen-oxidiser mix injected into the engine always remained too fuel rich to sustain a flame without any additional mixing with the captured air. Addition of pre-mixed oxygen with the fuel was found to significantly alter the performance of the engine; enhancing both combustion and ignition and converting a previously observed limited combustion condition into one with sustained and noticeable combustion induced pressure rise. Increases in the enrichment percentage lead to further increases in combustion levels and acted to reduce ignition lengths within the engine. Suppressed combustion runs, where a nitrogen test gas was used, confirmed that the pressure rise observed in these experiments as attributed to the oxygen enrichment and not associated with the increased mass injected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emission spectroscopy was used to investigate ignition and combustion characteristics of supersonic combustion ramjet engines. Two-dimensional scramjet models with inlet injection, fuelled with hydrogen gas, were used in the study. The scramjet engines were configured to operate in radical farming mode, where combustion radicals are formed behind shock waves reflected at the walls. The chemiluminescence emission signals were recorded in a two-dimensional, time-integrated fashion to give information on the location and distribution of the radical farms in the combustors. High signal levels were detected in localised regions immediately downstream of shock reflections, an indication of localised hydroxyl formation supporting the concept of radical farming. Results are presented for a symmetric as well as an asymmetric scramjet geometry. These data represent the first successful visualisation of radical farms in the hot pockets of a supersonic combustor. Spectrally resolved measurements have been obtained in the ultraviolet wavelength range between 300 and 400 nm. This data shows that the OH! chemiluminescence signal around 306nm is not the most dominant source of radiation observed in the radical farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both [C4CO]−· and [C2COC2]−· are formed in the ion source of a VG ZAB 2HF mass spectrometer by the respective processes HO− + Me3Si–CC–CC–CO–CMe3 → [C4CO]−· + Me3SiOH + Me3C·, and Me3Si–CC–CO–CC–SiMe3 + SF6 + e → [C2COC2]−· + 2Me3SiF + SF4. The second synthetic pathway involves a double desilylation reaction similar to that first reported by Squires. The two radical anion isomers produce different and characteristic charge reversal spectra upon collisional activation. In contrast, following collision induced charge stripping, both radical anions produce neutral C4CO as evidenced by the identical neutralisation reionisation (−NR+) spectra. The exclusive rearrangement of C213COC2 to C413CO indicates that 12C–O bond formation is not involved in the reaction. Ab initio calculations (at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G∗ level of theory) have been used to investigate the reaction coordinates on the potential surfaces for both singlet and triplet rearrangements of neutral C2COC2. Singlet C2COC2 is less stable than singlet C4CO by 78.8 kcal mol−1 and requires only 8.5 kcal mol−1 of additional energy to effect conversion to C4CO by a rearrangement sequence involving three C–C ring opening/cyclisation steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a determination of Delta(f)H(298)(HOO) based upon a negative. ion thermodynamic cycle. The photoelectron spectra of HOO- and DOO- were used to measure the molecular electron affinities (EAs). In a separate experiment, a tandem flowing afterglow-selected ion flow tube (FA-SIFT) was used to measure the forward and reverse rate constants for HOO- + HCdropCH reversible arrow HOOH + HCdropC(-) at 298 K, which gave a value for Delta(acid)H(298)(HOO-H). The experiments yield the following values: EA(HOO) = 1.078 +/- 0.006 eV; T-0((X) over tilde HOO - (A) over tilde HOO) = 0.872 +/- 0.007 eV; EA(DOO) = 1.077 +/- 0.005 eV; T-0((X) over tilde DOO - (A) over tilde DOO) = 0.874 +/- 0.007 eV; Delta(acid)G(298)(HOO-H) = 369.5 +/- 0.4 kcal mol(-1); and Delta(acid)H(298)(HOO-H) = 376.5 +/- 0.4 kcal mol(-1). The acidity/EA thermochemical cycle yields values for the bond enthalpies of DH298(HOO-H) = 87.8 +/- 0.5 kcal mol(-1) and Do(HOO-H) = 86.6 +/- 0.5 kcal mol(-1). We recommend the following values for the heats of formation of the hydroperoxyl radical: Delta(f)H(298)(HOO) = 3.2 +/- 0.5 kcal mol(-1) and Delta(f)H(0)(HOO) = 3.9 +/- 0.5 kcal mol(-1); we recommend that these values supersede those listed in the current NIST-JANAF thermochemical tables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation, The mechanisms of these processes have been elucidated by a combination of product ion and labelling (H-2 and C-13) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of 'C4H8' is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of 'C6H12' occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-l-ene and hex-l-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-l-ene and hex-l-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].