994 resultados para gas spectral radiation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 mu g/ml), RSD <= 4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD <= 3.8%, recovery from 95.5-100.0% and LOQ of 32 mu g/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. on the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.
Resumo:
We evaluated the growth and development of the medicinal species Pothomorphe umbellata ( L.) Miq. under different shade levels ( full sun and 30, 50, and 70 % shade, marked as I(100), I(70), I(50), and I(30), respectively) and their effects on gas exchange and activities of antioxidant enzymes. Photosynthetically active radiation varied from 1 254 mu mol m(-2) s(-1) at I(100) to 285 mu mol m(-2) s(-1) at I(30). Stomatal conductance, net photosynthetic rate, and relative chlorophyll (Chl) content were maximal in I(70) plants. Plants grown under I(100) produced leaves with lower Chl content and signs of chlorosis and necrosis. These symptoms indicated Chl degradation induced by the generation of reactive oxygen species. Stress related antioxidant enzyme activities ( Mn-SOD, Fe-SOD, and Cu/Zn-SOD) were highest in I(100) plants, whereas catalase activity was the lowest. Hence P. umbellata is a shade species ( sciophyte), a feature that should be considered in reforestation programs or in field plantings for production of medicinal constituents.
Resumo:
This paper analyzes the thermal storage characteristics of aluminum plates in furnaces during their heating for lamination under two sources of heat: an electrical resistance bank and a combustion process carried out with natural gas. The set of equations to model the furnace under operation with electrical energy, for air as the fluid, is presented. This supports the theoretical analysis for the system under operation with natural gas combustion products. A numerical procedure, using the software ANSYS, is applied to determine the convection heat transfer coefficients for heating by the air flow. Temperatures measured in a plate inside a real furnace are used as parameters to determine these coefficients. Then convection and radiation heat transfer coefficients are determined for the natural gas combustion products. Results are compared, indicating a possible gain of 5.5 h in relation to a 19.5 h period of conventional electrical heating per plate.
Resumo:
This study focuses on the presence of radon (Rn-222) and volatile organic compounds (VOCs) in soil gases at a gas station located in the city of Rio Claro, Sao Paulo, Brazil, where a fossil fuel leak occurred. The spatial distribution results show a correlation between Rn-222 and VOCs, consistent with the fact that radon gas has a greater chemical affinity with organic phases than with water. This finding demonstrates that the presence of a residual hydrocarbon phase in an aquifer can retain radon, leading to a reduced radon content in the soil gas. The data in this study confirm the results of previous investigations, in which the method used in this study provided a preliminary fingerprint of a contaminated area. Furthermore, the data analysis time is brief, and only simple equipment is required. (C) 2014 Published by Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this work was to evaluate the effects of UV-B radiation on the vegetative growth and on the gas exchange characteristics of passion fruit plants (Passiflora edulis) grown in greenhouse. The average unweighted UV-B radiation near the apex of the plants was 8 W m-2 for the UV-B treatment (high UV-B), and 0.8 W m-2 for the control plants (low UV-B). Plants were irradiated with UV-B for 7 hours per day, centered on solar noon, during 16 days. High UV-B radiation resulted in lower shoot dry matter accumulation per plant. The content of UV-B absorbing compounds and anthocyanins was increased in the plants exposed to high UV-B radiation, when compared with the control. UV-B radiation did not affect stomatal conductance or transpiration rate, but reduced photosynthesis and instantaneous water‑use efficiency, and increased intercellular CO2 concentration. The accumulation of UV-B-absorbing compounds and anthocyanins did not effectively shield plants from supplementary UV-B radiation, since the growth and photosynthetic processes were significantly reduced.
Resumo:
The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.
Resumo:
We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).
Resumo:
The aim of this study was to evaluate the gamma radiation effects on odor volatiles in oolong tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The irradiation has a large influence on oolong tea odor profile, once it was identified 40% of new compounds after this process, the 5 kGy and 20 kGy were the doses that degraded more volatiles found naturally in this kind of tea and the dose of 10 kGy was the dose that formed more new compounds. Statistical difference was found between the 5 kGy and 15 kGy volatile profiles, however the sensorial analysis showed that the irradiation at dose up 20 kGy did not interfere on consumer perception. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Micro-gas turbines are a good alternative for on-site power generation, since their operation is very reliable. The possibility of operating with various fuels increases versatility and, as a result, the usage of these devices. Focusing on a performance improvement of a tri-fuel low-cost micro-gas turbine, this work presents investigations of the inner flow of its combustion chamber. The aim of this analysis was the characterization of the flame structure by the temperature field of the chamber inner flow. The chamber was fuelled with natural gas. In the current chamber, a swirler and a reversed flow configuration were utilized to provide flame stabilization. The inner flow investigations were done with numerical analysis, which were compared to experimental data. The analysis of the inner flow was done with numerical simulations, which used the RSM turbulence model. A β-PDF equilibrium model was adopted to account for the turbulent combustion process. Different models of heat transfer were compared. Thermal radiation and specially heat conduction in the liner walls played significant roles on results.
Resumo:
Type Ia supernovae have been successfully used as standardized candles to study the expansion history of the Universe. In the past few years, these studies led to the exciting result of an accelerated expansion caused by the repelling action of some sort of dark energy. This result has been confirmed by measurements of cosmic microwave background radiation, the large-scale structure, and the dynamics of galaxy clusters. The combination of all these experiments points to a “concordance model” of the Universe with flat large-scale geometry and a dominant component of dark energy. However, there are several points related to supernova measurements which need careful analysis in order to doubtlessly establish the validity of the concordance model. As the amount and quality of data increases, the need of controlling possible systematic effects which may bias the results becomes crucial. Also important is the improvement of our knowledge of the physics of supernovae events to assure and possibly refine their calibration as standardized candle. This thesis addresses some of those issues through the quantitative analysis of supernova spectra. The stress is put on a careful treatment of the data and on the definition of spectral measurement methods. The comparison of measurements for a large set of spectra from nearby supernovae is used to study the homogeneity and to search for spectral parameters which may further refine the calibration of the standardized candle. One such parameter is found to reduce the dispersion in the distance estimation of a sample of supernovae to below 6%, a precision which is comparable with the current lightcurve-based calibration, and is obtained in an independent manner. Finally, the comparison of spectral measurements from nearby and distant objects is used to test the possibility of evolution with cosmic time of the intrinsic brightness of type Ia supernovae.
Resumo:
Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.