798 resultados para computer science education
Resumo:
Primary science education is a concern around the world and quality mentoring within schools can develop preservice teachers’ practices. A five-factor model for mentoring has been identified, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback. Final-year preservice teachers (mentees, n=211) from three Turkish universities were administered a previously validated instrument to gather perceptions of their mentoring in primary science teaching. ANOVA indicated that each of these five factors was statistically significant (p<.001) with mean scale scores ranging from 3.36 to 4.12. Although mentees perceived their mentors to provide evaluation feedback (95%), model classroom management (88%), guide their preparation (96%), and outline the science curriculum (92%), the majority of mentors were perceived not to assist their mentees in 10 of the 34 survey items. Professional development programmes that target the specific needs of these mentors may further enhance mentoring practices for advancing primary science teaching.
Resumo:
Novice programmers have difficulty developing an algorithmic solution while simultaneously obeying the syntactic constraints of the target programming language. To see how students fare in algorithmic problem solving when not burdened by syntax, we conducted an experiment in which a large class of beginning programmers were required to write a solution to a computational problem in structured English, as if instructing a child, without reference to program code at all. The students produced an unexpectedly wide range of correct, and attempted, solutions, some of which had not occurred to their teachers. We also found that many common programming errors were evident in the natural language algorithms, including failure to ensure loop termination, hardwiring of solutions, failure to properly initialise the computation, and use of unnecessary temporary variables, suggesting that these mistakes are caused by inexperience at thinking algorithmically, rather than difficulties in expressing solutions as program code.
Resumo:
The implementation of effective science programmes in primary schools is of continuing interest and concern for professional developers. As part of the Australian Academy of Science's approach to creating an awareness of Primary Investigations, a project team trialled a series of satellite television broadcasts of lessons related to two units of the curriculum for Year 3 and 4 children in 48 participating schools. The professional development project entitled Simply Science, included a focused component for the respective classroom teachers, which was also conducted by satellite. This paper reports the involvement of a Year 4 teacher in the project and describes her professional growth. Already an experienced and confident teacher, no quantitative changes in science teaching self efficacy were detected. However, her pedagogical content knowledge and confidence to teach science in the concept areas of matter and energy were enhanced. Changes in the teacher's views about the co-operative learning strategies espoused by Primary Investigations were also evident. Implications for the design of professional development programmes for primary science teachers are discussed.
Resumo:
While teacher leadership is the basis for innovation and reform within schools, few international studies have focused on the leadership practices of science teachers and heads of science departments. This chapter reviews the Australasian literature that addresses the issue both directly and indirectly. The transformational practices of heads of science departments as well as influential science teachers within departments are identified in this chapter.
Resumo:
The consistently high failure rate in Queensland University of Technology’s introductory programming subject reflects a similar dilemma facing other universities worldwide. Experiments were conducted to quantify the effectiveness of collaborative learning on introductory level programming students over a number of semesters, replicating previous studies in this area. A selection of workshops in the introductory programming subject required students to problem-solve and program in pairs, mimicking the eXtreme Programming concept of pair programming. The failure rate for the subject fell from what had been an average of 30% since 2003 (with a high of 41% in 2006), to just 5% for those students who worked consistently in pairs.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
This paper discusses the use of models in automatic computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgements as to the probable usage and evidentiary value of a computer system. The computer profiling object model can be implemented so as to support automated analysis to provide an investigator with the information needed to decide whether manual analysis is required.
Resumo:
The purpose of this study was to describe the teaching and leadership experiences of a science teacher who, as head of department, was preparing to introduce changes in the science department of an independent school in response to the requirements of the new junior science syllabus in Queensland, Australia. This teacher consented to classroom observations and interviews with the researchers where his beliefs about teaching practice and change were explored. Other science teachers at the school also were interviewed about their reactions to the planned changes. Interpretive analysis of the data provides an account of the complex interactions, negotiations, compromises, concessions, and trade-offs faced by the teacher during a period of education reform. Perceived barriers existing within the school that impeded proposed change are identified
Resumo:
In order to develop scientific literacy students need the cognitive tools that enable them to read and evaluate science texts. One cognitive tool that has been widely used in science education to aid the development of conceptual understanding is concept mapping. However, it has been found some students experience difficulty with concept map construction. This study reports on the development and evaluation of an instructional sequence that was used to scaffold the concept-mapping process when middle school students who were experiencing difficulty with science learning used concept mapping to summarise a chapter of a science text. In this study individual differences in working memory functioning are suggested as one reason that students experience difficulty with concept map construction. The study was conducted using a design-based research methodology in the school’s learning support centre. The analysis of student work samples collected during the two-year study identified some of the difficulties and benefits associated with the use of scaffolded concept mapping with these students. The observations made during this study highlight the difficulty that some students experience with the use of concept mapping as a means of developing an understanding of science concepts and the amount of instructional support that is required for such understanding to develop. Specifically, the findings of the study support the use of multi-component, multi-modal instructional techniques to facilitate the development of conceptual understanding with students who experience difficulty with science learning. In addition, the important roles of interactive dialogue and metacognition in the development of conceptual understanding are identified.
Resumo:
There is no denying that the information technology revolution of the late twentieth century has arrived. Whilst not equitably accessible for many, others hold high expectations for the contributions online activity will make to student learning outcomes. Concurrently, and not necessarily consequentially, the number of science and technology secondary school and university graduates throughout the world has declined substantially, as has their motivation and engagement with school science (OECD, 2006). The aim of this research paper is to explore one aspect of online activity, that of forum-based netspeak (Crystal, 2006), in relation to the possibilities and challenges it provides for forms of scientific learning. This paper reports findings from a study investigating student initiated netspeak in a science inspired multiliteracies (New London Group, 2000) project in one middle primary (aged 7-10 years) multi-age Australian classroom. Drawing on the theoretical description of the Five phases of enquiry proposed by Bybee (1997), an analytic framework is proffered that allows identification of student engagement, exploration, explanation, elaboration and evaluation of scientific enquiry. The findings provide insight into online forums for advancing learning in and motivation for science in the middle primary years.
Resumo:
Science and technology are promoted as major contributors to national development. Consequently, improved science education has been placed high on the agenda of tasks to be tackled in many developing countries, although progress has often been limited. In fact there have been claims that the enormous investment in teaching science in developing countries has basically failed, with many reports of how efforts to teach science in developing countries often result in rote learning of strange concepts, mere copying of factual information, and a general lack of understanding on the part of local students. These generalisations can be applied to science education in Fiji. Muralidhar (1989) has described a situation in which upper primary and middle school students in Fiji were given little opportunity to engage in practical work; an extremely didactic form of teacher exposition was the predominant method of instruction during science lessons. He concluded that amongst other things, teachers' limited understanding, particularly of aspects of physical science, resulted in their rigid adherence to the text book or the omission of certain activities or topics. Although many of the problems associated with science education in developing countries have been documented, few attempts have been made to understand how non-Western students might better learn science. This study addresses the issue of Fiji pre-service primary teachers' understanding of a key aspect of physical science, namely, matter and how it changes, and their responses to learning experiences based on a constructivist epistemology. Initial interviews were used to probe pre-service primary teachers' understanding of this domain of science. The data were analysed to identify students' alternative and scientific conceptions. These conceptions were then used to construct Concept Profile Inventories (CPI) which allowed for qualitative comparison of the concepts of the two ethnic groups who took part in the study. This phase of the study also provided some insight into the interaction of scientific information and traditional beliefs in non-Western societies. A quantitative comparison of the groups' conceptions was conducted using a Science Concept Survey instrument developed from the CPis. These data provided considerable insight into the aspects of matter where the pre-service teachers' understanding was particularly weak. On the basis of these preliminary findings, a six-week teaching program aimed at improving the students' understanding of matter was implemented in an experimental design with a group of students. The intervention involved elements of pedagogy such as the use of analogies and concept maps which were novel to most of those who took part. At the conclusion of the teaching programme, the learning outcomes of the experimental group were compared with those of a control group taught in a more traditional manner. These outcomes were assessed quantitatively by means of pre- and post-tests and a delayed post-test, and qualitatively using an interview protocol. The students' views on the various teaching strategies used with the experimental group were also sought. The findings indicate that in the domain of matter little variation exists in the alternative conceptions held by Fijian and Indian students suggesting that cultural influences may be minimal in their construction. Furthermore, the teaching strategies implemented with the experimental group of students, although largely derived from Western research, showed considerable promise in the context of Fiji, where they appeared to be effective in improving the understanding of students from different cultural backgrounds. These outcomes may be of significance to those involved in teacher education and curriculum development in other developing countries.
Resumo:
This research investigated students' construction of knowledge about the topics of magnetism and electricity emergent from a visit to an interactive science centre and subsequent classroom-based activities linked to the science centre exhibits. The significance of this study is that it analyses critically an aspect of school visits to informal learning centres that has been neglected by researchers in the past, namely the influence of post-visit activities in the classroom on subsequent learning and knowledge construction. Employing an interpretive methodology, the study focused on three areas of endeavour. Firstly, the establishment of a set of principles for the development of post-visit activities, from a constructivist framework, to facilitate students' learning of science. Secondly, to describe and interpret students' scientific understandings : prior t o a visit t o a science museum; following a visit t o a science museum; and following post-visit activities that were related to their museum experiences. Finally, to describe and interpret the ways in which students constructed their understandings: prior to a visit to a science museum; following a visit to a science museum; and following post-visit activities directly related to their museum experiences. The study was designed and implemented in three stages: 1) identification and establishment of the principles for design and evaluation of post-visit activities; 2) a pilot study of specific post-visit activities and data gathering strategies related to student construction of knowledge; and 3) interpretation of students' construction of knowledge from a visit to a science museum and subsequent completion of post-visit activities, which constituted the main study. Twelve students were selected from a year 7 class to participate in the study. This study provides evidence that the series of post-visit activities, related to the museum experiences, resulted in students constructing and reconstructing their personal knowledge of science concepts and principles represented in the science museum exhibits, sometimes towards the accepted scientific understanding and sometimes in different and surprising ways. Findings demonstrate the interrelationships between learning that occurs at school, at home and in informal learning settings. The study also underscores for teachers and staff of science museums and similar centres the importance of planning pre- and post-visit activities, not only to support the development of scientific conceptions, but also to detect and respond to alternative conceptions that may be produced or strengthened during a visit to an informal learning centre. Consistent with contemporary views of constructivism, the study strongly supports the views that : 1) knowledge is uniquely structured by the individual; 2) the processes of knowledge construction are gradual, incremental, and assimilative in nature; 3) changes in conceptual understanding are can be interpreted in the light of prior knowledge and understanding; and 4) knowledge and understanding develop idiosyncratically, progressing and sometimes appearing to regress when compared with contemporary science. This study has implications for teachers, students, museum educators, and the science education community given the lack of research into the processes of knowledge construction in informal contexts and the roles that post-visit activities play in the overall process of learning.