970 resultados para chemical solution deposition method
Resumo:
Hybrid composites composed of zinc phthalocyanine embedded in silicon matrixes have attracted attention because of the potential for solar energy conversion. We produce hybrid composites by thermal evaporation for the plithalocyanine and PECVD (Plasma Enhanced Chemical Vapor Deposition) for the silicon matrix. Deposition of ZnPc/a-Si(amorphous silicon) composites was achieved in a sequential manner. The compound films were characterized by optical transmittance spectra and photoconductivity measurement. The optical transmittance measurements were carried out in the visible region (500 - 800 nm). Compared to pure silicon film, the photosensitivity of compound functional films was enhanced by one order of magnitude. This demonstrates the Si sensitized by adding ZnPc.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.
Resumo:
ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAssb on (100) Gasb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17 mu m in wavelength. The surface of InAssb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAssb film shows to be of n-type conduction with an electron concentration of 8.52 x 10(16) cm(-3).
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
Single-crystal GaN films have been deposited on (01 (1) over bar 2) sapphire substrates using trimethylgallium (TMGa) and NH3 as sources. The morphological, crystalline, electrical and optical characterizations of GaN film are investigated. The carrier concentration ofundoped GaN increases with decreasing input NH3-to-TMGa molar flow ratio.
Resumo:
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
Resumo:
High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
Resumo:
GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor. High-resolution X-ray diffraction (HRXRD) and secondary ion mass spectrometry (SIMS) are combined in determining the nitrogen contents in the samples. Room temperature photoluminescence (RTPL) measurement is also used in characterizing. The influence of different Ga precursors on GaNAs quality is investigated. Samples grown with triethylgallium (TEGa) have better qualities and less impurity contamination than those with trimethylgallium (TMGa). Nitrogen content of 5.688% is achieved with TEGa. The peak wavelength in RTPL measurement is measured to be 1278.5nm.
Resumo:
于2010-11-23批量导入
Resumo:
Polymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440degreesC,using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 degreesC is needed. The diameters of Si nanowires range from 15 to 100 urn. The structure morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.
Resumo:
In this paper. we investigate the influences of the initial nitridation of sapphire substrates on the optical and structural characterizations in GaN films. Two GaN samples with and without 3 min nitridation process were investigated by photoluminescence (PL) spectroscopy in the temperature range of 12-300 K and double-crystal X-ray diffraction (XRD). In the 12 K PL spectra of the GaN sample without nitridation, four dominant peaks at 3.476, 3.409 3.362 and 3.308 eV were observed, which were assigned to donor bound exciton, excitons bound to stacking faults and extended structural defects. In the sample with nitridation, three peaks at 3.453, 3.365. and 3.308 eV were observed at 12 K, no peak related to stacking faults. XRD results at different reflections showed that there are more stacking faults in the samples without nitridation.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.