912 resultados para atelestite, arsenate, bismuth, Raman spectroscopy, hydroxy group
Resumo:
Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10-6 mol dm-3. The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10-4 and 2.5 × 10-3 mol dm-3, respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.
Resumo:
Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.
Resumo:
Foram estudados os efeitos da adição de plantas medicinais de princípios cicatrizantes (Centelha asiática, Papaína e Confrei) na ração controle de caracóis terrestres, para se avaliar a interferência destas plantas na composição do muco glicoprotéico. Foram utilizados 80 caracóis terrestres Achatina sp, baseados em um peso homogêneo (49 e 40 g e idade média de 10 e 19 meses para Achatina fulica e Achatina monochromatica, respectivamente). Os animais foram distribuídos aleatoriamente em oito grupos experimentais: controle Achatina fulica (FC) e Achatina monochromatica (MC), centelha asiática Achatina fulica (FCe) e Achatina monochromatica (MCe), papaína Achatina fulica (FPa) e Achatina monochromatica (MPa) e confrei Achatina fulica (FCo) e Achatina monochromatica (MCo). Água e ração foram fornecidos ad libitum. Ao final de 150 dias de tratamento, os animais foram submetidos à técnica de extração do muco glicoprotéico, por meio do estímulo manual da glândula podal, responsável pela secreção deste muco. Esta metodologia considerou o bem-estar dos animais, uma vez que os mesmos não foram sacrificados e retornaram ao seu sistema de criação. Os mucos foram analisados por meio de testes colorimétricos e espectroscópicos, que constataram alterações semelhantes, porém apresentaram variação significativa em sua composição glicoprotéica.
Resumo:
ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t ''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than similar to 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t '' and cubic ones.
Resumo:
The structural and optical properties of GaAsP/GaP core-shell nanowires grown by gas source molecular beam epitaxy were investigated by transmission electron microscopy, Raman spectroscopy, photoluminescence (PL), and magneto-PL. The effects of surface depletion and compositional variations in the ternary alloy manifested as a redshift in GaAsP PL upon surface passivation, and a decrease in redshift in PL in the presence of a magnetic field due to spatial confinement of carriers.
Resumo:
The title compound [systematic name: 3 beta-lup-20(29)-en-3-ol], C(30)H(50)O, was isolated from the leaves of Garcinia brasiliensis (common name: bacupari; a member of the Guttiferae family) and has been shown to have many useful medicinal and biological properties. The lupeol molecule consists of four six-membered rings (adopting chair conformations) and one five-membered ring (with an envelope conformation), all fused in trans fashion. Lupeol is isomorphic with the pentacyclic triterpene 3 beta,30-dihydroxylup-20(29)-ene, which differs from lupeol due to the presence of an additional hydroxy group. The crystal packing is stabilized by van der Waals interactions and intermolecular O-H center dot center dot center dot O hydrogen bonds, giving rise to an infinite helical chain along the c axis.
Resumo:
This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.
Resumo:
The electrochemical polymerization of aniline in a hydrophobic room-temperature ionic liquid and the spectroelectrochemical characterization of the formed film are presented. The polymerization occurs without the presence of acid in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMITFSI), leading to a very stable electroactive material where no degradation was observed even at high applied potentials. Both in situ UV-Vis and Raman spectroscopic studies provided evidence for the stabilization of pernigraniline salt at high oxidation potentials and that this polyaniline state is the conducting form, as was corroborated by in situ resistance measurements. These data are indicative that low conductivity is not an intrinsic property of pernigraniline salt and this point must be reconsidered.
Resumo:
Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < omega < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (similar to 19 angstrom) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604533]
Resumo:
Controlling the phase stability of ZrO2 nanoparticles is of major importance in the development of new ZrO2-based nanotechnologies. Because of the fact that in nanoparticles the surface accounts for a larger fraction of the total atoms, the relative phase stability can be controlled throughout the surface composition, which can be toned by surface excess of one of the components of the system., The objective of this work is to delineate a relationship between surface excess (or solid solution) of MgO relative to ZrO2 and the polymorphic stability of (ZrO2)(1-x) - (MgO), nanopowders, where 0.0 <= x <= 0.6. The nanopowders were prepared by a liquid precursor method at 500 degrees C and characterized by N-2 adsorption (BET), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), and Raman spectroscopy. For pure ZrO2 samples, both tetragonal and monoclinic polymorphs were detected, as expected considering the literature. For MgO molar fractions varying from 0.05 to 0.10, extensive solid solution could not be detected, and a ZrO2 surface energy reduction, caused by Mg surface excess detected by XPS, promoted tetragonal polymorph thermodynamic stabilization with relation to monoclinic. For MgO molar fractions higher than 0.10 and up to 0.40, Mg solid solution could be detected and induced cubic phase stabilization. MgO periclase was observed only at x = 0.6. A discussion based on the relationship between the surface excess, surface energy, and polymorph stability is presented.
Resumo:
The phenylethanoid glycoside acteoside and the iridoids ipolamiide and 4-methoxycarbonyl-7-methylcyclopenta[c]pyran (fulvoipolamiide) were isolated from the leaves of Stachytarpheta glabra. The solid state structure of fulvoipolamiide was confirmed by X-ray diffraction studies. The molecules of fulvoipolamiide are displayed in layers parallel to the crystallographic axis a. This molecule is planar with electron delocalization in the fused ring system and the pyran rings of adjacent layers in the solid state structure are involved in a pi-pi stacking interaction. Raman spectroscopy has also been used to characterize the most important bands present in the spectra of fulvoipolamiide and ipolamiide, and comparison made with literature allows the assignment of some key markers, specially the bands in the 1600-1700 cm(-1) range. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, high-aligned single-walled carbon nanotube (SWCNT) forest have been grown using a high-density plasma chemical vapor deposition technique (at room temperature) and patterned into micro-structures by photolithographic techniques, that are commonly used for silicon integrated circuit fabrication. The SWCNTs were obtained using pure methane plasma and iron as precursor material (seed). For the growth carbon SWCNT forest the process pressure was 15 mTorr, the RF power was 250W and the total time of the deposition process was 3 h. The micropatterning processes of the SWCNT forest included conventional photolithography and magnetron sputtering for growing an iron layer (precursor material). In this situation, the iron layer is patterned and high-aligned SWCNTs are grown in the where iron is present, and DLC is formed in the regions where the iron precursor is not present. The results can be proven by Scanning Electronic Microscopy and Raman Spectroscopy. Thus, it is possible to fabricate SWCNT forest-based electronic and optoelectronic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by high-density plasma chemical vapor deposition Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films. micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree (that is related with the structure and chemical composition) strongly depend on the substrate surface conditions The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.