971 resultados para Werner, CossmannWerner, CossmannCossmannWerner
Resumo:
Charts of the various families related to the Lindley family: Lipschitz, Heimann, Edinger, Hochstaedter, Goldschmidt, Jakobson, Braunschweig.
Resumo:
Grave sculpture as interpreter of life and death. Grave sculptures done by Heikki Häiväoja, Kain Tapper and Matti Peltokangas 1952-2002. The thoughts of Philippe Ariès and Erwin Panofsky on western funeral art constitute the starting point of this study. These scholars speak about the 20th century as a period of decline regarding western funeral art. The reason for this situation lies, according to them, in the fact that death has been rejected and become a private affair in modern society. Especially Panofsky sees an important reason for the decay of funeral art also in the separation of death from religion. In this study, I approach the view of Ariès and Panofsky from the angle of Finnish funeral art. The subject of the study is grave sculptures of three Finnish sculptors: Heikki Häiväoja, Kain Tapper and Matti Peltokangas, from 1952 to 2002. (The analysis of the grave sculptures has been performed with the Iconology of Erwin Panofsky. The analysis has been deepened by the ideas of a graveyard as a semiotic text according to Werner Enninger and Christa Schwens. In order to confirm their argumentation, they analyse the graveyard text with the model of communicative functions of Roman Jakobson and verify that the graveyard is a cultural text according to Juri Lotman.) Results of the study In the grave sculptures of the sculptors, different worldviews appear alongside Christian thoughts indicating a new stage in the tradition of funeral art. In the grave sculptures characterised as Christian, the view of life after death is included. In these memorials the direction of life is prospective, pointing to the life beyond. Death is a border, beyond which one is unable to see. Nevertheless the border is open or marked by the cross. On this open border, death is absence of pain, glory and new unity. In memorials with different worldviews, the life beyond is a possibility which is not excluded. Memorials interpret life retrospectively; life is a precious memory which wakens grief and longing. Many memorials have metaphysical and mystic features. In spite of democratization the order and valuation of social classes appear in some memorials. The old order also materializes in the war memorials relating the same destiny of the deceased. Different burial places, nevertheless, do not indicate social inequality but are rather signs of diversity. The sculptors' abstract means of modern funeral art deepen the handling of the subject matter of death and reveal the mystery of it. Grave sculptures are a part of Finnish and sacral modern art, and there is an interaction between funeral art and modern art. Modern art acquires a new dimension, when grave sculptures become a part of its field. Grave sculptures offer an alternative to anonymous burying. The memorial is a sign of the end of life; it gives death significance and publicity and creates a relation to the past of the society. In this way, grave sculptures are a part of the chain of memory of the western funeral art, which extends throughout Antiquity until ancient Egypt. (In this study I have spoken of funeral art as a chain of memory using the thoughts of Danièle Hervieu-Léger.) There are no signs of decay in the grave sculptures, on the contrary the tradition of funeral art continues in them as a search for the meaning of life and death and as an intuitive interpretation of death. As such, grave sculptures are part of the Finnish discussion of death.
Resumo:
The German philosopher G.W.F.Hegel (1770–1831) is best known for his idealistic system philosophy, his concept of spirit [Geist] and for his dictum that the existing and the rational overlap. This thesis offers a new perspective: it examines the working of the concept ‘love’ in Hegel’s philosophy by looking at the contexts and function he puts it to, from his earliest writings to the very last lectures he gave. The starting point of the inquiry is that he applied the concept Liebe to different contexts for different purposes, but each time to provide an answer to a specific philosophical problem. His formulation, reformulation and use of ‘love’ give possible solutions to problems the solving of which was crucial to the development of his thought as a whole. The study is divided into three parts, each analysing the different problems and solutions to which Hegel applied the concept of love. The first part, "Love, morality and ethical life", examines these interconnected themes in Hegel’s early work. The main questions he addressed during this period concerned how to unite Kant’s philosophy and the Greek ideal of the good life. In this context, the concept ‘love’ did three things. First, it served to formulate his grounding idea of the relation between unity and difference, or the manifold. Secondly, it was the key to his attempt to base an ideal folk religion on Christianity interpreted as a religion of love. Finally, it provided the means to criticise Kant’s moral philosophy. The question of the moral value of love helped Hegel to break away from Kant’s thought and develop his own theory about love and ethical life. The second part of the study, "Love and the political realm", considers the way 'Liebe' functions in connection with questions concerning the community and political life in Hegel’s work. In addition to questioning the universal applicability of the concept of recognition as a key to his theory of social relations, the chapters focus on gender politics and the way he conceptualised the gender category ‘woman’ through the concept ‘love’. Another line of inquiry is the way the figure of Antigone was used to conceptualise the differentiated spheres of action for men and women, and the part ‘love’ played in Hegel’s description of Antigone’s motives. Thirdly, Hegel’s analogy of the family and the state and the way ‘love’ functions in an attempt to promote understanding of the relation between citizens and the state are examined. The third and final part of the study, "Love as absolute spirit", focuses on ‘love’ within Hegel’s systemic thought and the way he continued to characterise Geist through the language of Liebe up until and including his very last works. It is shown how Liebe functions in his hierarchical organisation of the domains of art, religion and philosophy, and how both art and religion end up in similar structural positions with regard to philosophy. One recurrent theme in the third part is Hegel’s complex relation to Romantic thought. Another line of investigation is how he reconstructed Christianity as a religion of love in his mature work. In striking contrast to his early thought, in his last works Hegel introduced a new concept of love that incorporated negativity, and that could also function as the root of political action.
Resumo:
Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.
Resumo:
Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14 days, cancer spheroids of 100-200µm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.
Resumo:
This paper presents results from a study on the production of Finnish prosody. The effect of word order and the tonal shape in the production of Finnish prosody was studied as produced by 8 native Finnish speakers. Predictions formulated with regard to results from an earlier study pertaining to the perception of promi- nence were tested. These predictions had to do with the tonal shape of the utterances in the form of a flat hat pattern and the effect of word order on the so called top-line declination within an adver- bial phrase in the utterances. The results from the experiment give support to the following claims: the temporal domain of prosodic focus is the whole utterance, word order reversal from unmarked to marked has an effect on the production of prosody, and the pro- duction of the tonal aspects of focus in Finnish follows a basic flat hat pattern. That is the prominence of a word can be produced by an f 0 rise or a fall, depending on the location of the word in an utterance. The basic accentual shape of a Finnish word is then not a pointed rise/fall hat shape as claimed before since it can vary depending on the syllable structure and the position within an ut- terance.
Resumo:
he growth of high-performance application in computer graphics, signal processing and scientific computing is a key driver for high performance, fixed latency; pipelined floating point dividers. Solutions available in the literature use large lookup table for double precision floating point operations.In this paper, we propose a cost effective, fixed latency pipelined divider using modified Taylor-series expansion for double precision floating point operations. We reduce chip area by using a smaller lookup table. We show that the latency of the proposed divider is 49.4 times the latency of a full-adder. The proposed divider reduces chip area by about 81% than the pipelined divider in [9] which is based on modified Taylor-series.
Resumo:
Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''
Resumo:
We investigate evolution of quantum correlations in ensembles of two-qubit nuclear spin systems via nuclear magnetic resonance techniques. We use discord as a measure of quantum correlations and the Werner state as an explicit example. We, first, introduce different ways of measuring discord and geometric discord in two-qubit systems and then describe the following experimental studies: (a) We quantitatively measure discord for Werner-like states prepared using an entangling pulse sequence. An initial thermal state with zero discord is gradually and periodically transformed into a mixed state with maximum discord. The experimental and simulated behavior of rise and fall of discord agree fairly well. (b) We examine the efficiency of dynamical decoupling sequences in preserving quantum correlations. In our experimental setup, the dynamical decoupling sequences preserved the traceless parts of the density matrices at high fidelity. But they could not maintain the purity of the quantum states and so were unable to keep the discord from decaying. (c) We observe the evolution of discord for a singlet-triplet mixed state during a radio-frequency spin-lock. A simple relaxation model describes the evolution of discord, and the accompanying evolution of fidelity of the long-lived singlet state, reasonably well.
Resumo:
Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.
Resumo:
Reaction of the salicylhydrazone of 2-hydroxy-1-naphthaldehyde (H2L1), anthranylhydrazone of 2hydroxy-l-naphthaldehyde (H2L2), benzoylhydrazone of 2-hydroxy-1-acetonaphthone (H2L3) and anthranylhydrazone of 2-hydroxy-1-acetonaphthone (H2L4; general abbreviation H2L) with MoO2(acac)21 afforded a series of 5- and 6- coordinate Mo(VI) complexes of the type MoO2L1-2(ROH)] where R = C2H5 (1) and CH3 (2)], and MoO2L3-4] (3 and 4). The substrate binding capacity of 1 has been demonstrated by the formation of one mononuclear mixed-ligand dioxidomolybdenum complex MoO2L1(Q)] (where Q= gamma-picoline (la)). Molecular structure of all the complexes (I, la, 2,3 and 4) is determined by X-ray crystallography, demonstrating the dibasic tridentate behavior of ligands. All the complexes show two irreversible reductive responses within the potential window -0.73 to -1.08 V, due to Movl/Mov and Mov/Mow processes. Catalytic potential of these complexes was tested for the oxidation of benzoin using 30% aqueous H2O2 as an oxidant in methanol. At least four reaction products, benzoic acid, benzaldehydedimethylacetal, methyl benzoate and benzil were obtained with the 95-99% conversion under optimized reaction conditions. Oxidative bromination of salicylaldehyde, a functional mimic of haloperoxidases, in aqueous 1-1202/KEr in the presence of HC1O4 at room temperature has also been carried out successfully. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Eight alkali metal ion-mediated dioxidovanadium(V), {(VO2L1-6)-O-V} A(H2O)n]proportional to, complexes for A = Li+, Na+, K+ and Cs+, containing tridentate aroylhydrazonate ligands coordinating via ONO donor atoms, are described. All the synthesised ligands and the metal complexes were successfully characterised by elemental analysis, IR, UV-Vis and NMR spectroscopy. X-ray crystallographic investigation of 3, 5-7 shows the presence of distorted NO4 coordination geometries for LVO2- in each case, and varying mu-oxido and/ or mu-aqua bridging with interesting variations correlated with the size of the alkali metal ions: with small Li+, no bridging-O is found but four ion aggregates are found with Na+, chains for K+ and finally, layers for Cs+. Two (5) or three-dimensional (3, 6 and 7) architectures are consolidated by hydrogen bonding. The dioxidovanadium(V) complexes were found to exhibit DNA binding activity due to their interaction with CT-DNA by the groove binding mode, with binding constants ranging from 10(3) to 10(4) M-1. Complexes 1-8 were also tested for DNA nuclease activity against pUC19 plasmid DNA which showed that 6 and 7 had the best DNA binding and photonuclease activity; these results support their good protein binding and cleavage activity with binding constants ranging from 104 to 105 M-1. Finally, the in vitro antiproliferative activity of all complexes was assayed against the HeLa cell line. Some of the complexes (2, 5, 6 and 7) show considerable activity compared to commonly used chemotherapeutic drugs. The variation in cytotoxicity of the complexes is influenced by the various functional groups attached to the aroylhydrazone derivative.