451 resultados para PLS-DA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we used chemometric tools to classify and quantify the protein content in samples of milk powder. We applied the NIR diffuse reflectance spectroscopy combined with multivariate techniques. First, we carried out an exploratory method of samples by principal component analysis (PCA), then the classification of independent modeling of class analogy (SIMCA). Thus it became possible to classify the samples that were grouped by similarities in their composition. Finally, the techniques of partial least squares regression (PLS) and principal components regression (PCR) allowed the quantification of protein content in samples of milk powder, compared with the Kjeldahl reference method. A total of 53 samples of milk powder sold in the metropolitan areas of Natal, Salvador and Rio de Janeiro were acquired for analysis, in which after pre-treatment data, there were four models, which were employed for classification and quantification of samples. The methods employed after being assessed and validated showed good performance, good accuracy and reliability of the results, showing that the NIR technique can be a non invasive technique, since it produces no waste and saves time in analyzing the samples
Resumo:
In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%
Resumo:
In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma
Resumo:
Aiming to consumer s safety the presence of pathogenic contaminants in foods must be monitored because they are responsible for foodborne outbreaks that depending on the level of contamination can ultimately cause the death of those who consume them. In industry is necessary that this identification be fast and profitable. This study shows the utility and application of near-infrared (NIR) transflectance spectroscopy as an alternative method for the identification and classification of Escherichia coli and Salmonella Enteritidis in commercial fruit pulp (pineapple). Principal Component Analysis (PCA), Independent Modeling of Class Analogy (SIMCA) and Discriminant Analysis Partial Least Squares (PLS-DA) were used in the analysis. It was not possible to obtain total separation between samples using PCA and SIMCA. The PLS-DA showed good performance in prediction capacity reaching 87.5% for E. coli and 88.3% for S. Enteritides, respectively. The best models were obtained for the PLS-DA with second derivative spectra treated with a sensitivity and specificity of 0.87 and 0.83, respectively. These results suggest that the NIR spectroscopy and PLS-DA can be used to discriminate and detect bacteria in the fruit pulp
Resumo:
The Quadratic Minimum Spanning Tree Problem (QMST) is a version of the Minimum Spanning Tree Problem in which, besides the traditional linear costs, there is a quadratic structure of costs. This quadratic structure models interaction effects between pairs of edges. Linear and quadratic costs are added up to constitute the total cost of the spanning tree, which must be minimized. When these interactions are restricted to adjacent edges, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). AQMST and QMST are NP-hard problems that model several problems of transport and distribution networks design. In general, AQMST arises as a more suitable model for real problems. Although, in literature, linear and quadratic costs are added, in real applications, they may be conflicting. In this case, it may be interesting to consider these costs separately. In this sense, Multiobjective Optimization provides a more realistic model for QMST and AQMST. A review of the state-of-the-art, so far, was not able to find papers regarding these problems under a biobjective point of view. Thus, the objective of this Thesis is the development of exact and heuristic algorithms for the Biobjective Adjacent Only Quadratic Spanning Tree Problem (bi-AQST). In order to do so, as theoretical foundation, other NP-hard problems directly related to bi-AQST are discussed: the QMST and AQMST problems. Bracktracking and branch-and-bound exact algorithms are proposed to the target problem of this investigation. The heuristic algorithms developed are: Pareto Local Search, Tabu Search with ejection chain, Transgenetic Algorithm, NSGA-II and a hybridization of the two last-mentioned proposals called NSTA. The proposed algorithms are compared to each other through performance analysis regarding computational experiments with instances adapted from the QMST literature. With regard to exact algorithms, the analysis considers, in particular, the execution time. In case of the heuristic algorithms, besides execution time, the quality of the generated approximation sets is evaluated. Quality indicators are used to assess such information. Appropriate statistical tools are used to measure the performance of exact and heuristic algorithms. Considering the set of instances adopted as well as the criteria of execution time and quality of the generated approximation set, the experiments showed that the Tabu Search with ejection chain approach obtained the best results and the transgenetic algorithm ranked second. The PLS algorithm obtained good quality solutions, but at a very high computational time compared to the other (meta)heuristics, getting the third place. NSTA and NSGA-II algorithms got the last positions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Several Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.
Multivariate quality control studies applied to Ca(II) and Mg(II) determination by a portable method
Resumo:
A portable or field test method for simultaneous spectrophotometric determination of calcium and magnesium in water using multivariate partial least squares (PLS) calibration methods is proposed. The method is based on the reaction between the analytes and methylthymol blue at pH 11. The spectral information was used as the X-block, and the Ca(II) and Mg(II) concentrations obtained by a reference technique (ICP-AES) were used as the Y-block. Two series of analyses were performed, with a month's difference between them. The first series was used as the calibration set and the second one as the validation set. Multivariate statistical process control (MSPC) techniques, based on statistics from principal component models, were used to study the features and evolution with time of the spectral signals. Signal standardization was used to correct the deviations between series. Method validation was performed by comparing the predictions of the PLS model with the reference Ca(II) and Mg(II) concentrations determined by ICP-AES using the joint interval test for the slope and intercept of the regression line with errors in both axes. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).
Resumo:
The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.
Resumo:
This work describes the application of partial least squares (PLS) regression to variables that represent the oxidation data of several types of secondary metabolite isolated from the family Asteraceae. The oxidation states were calculated for each carbon atom of the involved compounds after these had been matched with their biogenetic precursor. The states of oxidation variations were named oxidation steps. This methodology represents a new approach to inspect the oxidative changes in taxa. Partial least square (PLS) regression was used to inspect the relationships among terpenoids, cournarins, polyacetylenes, and flavonoids from a data base containing approximately 27,000 botanical entries. The results show an interdependence between the average oxidation states of each class of secondary metabolite at tribe and sub tribe levels.
Resumo:
The objectives of this work were to determine the micelial growth curve of the pathogen and the sensitivity to some fungicides potencially efficient to disease control. The optimum temperature range for micelial growth of Phyllosticta sp, was between 25 and 27.5 degrees C. The maximum and minimum temperatures for micelial growth were 32.5 degrees C and 10 degrees C. Temperatures of 5 and 35 degrees C completely inhibited the growth of the isolates. Total inhibition of the micelial growth was observed with captan and mancozeb (1000 mg a.i./ml) and triadimenol (100 mg a.i./ml). Partial reduction of the micelial growth was observed with iprodione, methyl tiofanate and chlorothalonil until 1.000 mg/ml. The chemical control of PLS was studied in a commercial area of ginger ''Gigante'', in Morretes, PR, where 18 sprays were carried out, with a break of 7 to 10 days, from December to April. The highest reduction of the area under the disease progress curve standardized (AUDPCs) was observed with the spray of chlorothalonil. With the application of dithianon, cupper oxychloride, folpet, mancozeb and captan it was observed AUDPCs between 15.05 and 18.61 lesions/leaf. Iprodione, benomyl, triadimenol and methyl tiofanate did not control the disease (AUDPCs between 20.03 and 25.04 lesions/leaf). The AUDPCs in the check plot was 35.88 lesions/leaf. There was no significant difference of vigor and of ginger yield between fungicide treatments. The cupper oxichloride was phytotoxic to ginger.