Carbon Nuclear Magnetic Resonance Spectroscopic Profiles coupled to Partial Least-Squares Multivariate Regression for Prediction of Several Physicochemical Parameters of Brazilian Commercial Gasoline


Autoria(s): Flumignan, Danilo Luiz; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; Boralle, Nivaldo; Oliveira, Jose Eduardo de
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/09/2012

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Brazilian commercial gasoline follows a rigid quality control, regulated by Brazilian Government Petroleum, Natural Gas, and Biofuels Agency, ANP, following international analytical protocols, such as ASTM and ABNT, covered by Regulation ANP No. 309. Each property is a complicated function of the gasoline chemical composition, which would be represented by diverse types of mathematical correlations. However, these correlations are not adjusted to Brazilian gasoline, whose chemical composition is modified by anhydrous ethanol addition. The purpose of this work is to find correlations, using partial least-squares (PLS) regressions, between C-13 NMR Brazilian gasoline fingerprintings and several physicochemical parameters, such as relative density, distillation curve (temperatures related to 10, 50, and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and antiknock index), hydrocarbon compositions (olefins, aromatics, and saturated) and anhydrous ethanol and benzene. 150 representative gasoline samples, collected randomly from different gas stations, were analyzed following international analytical protocols. All C-13 NMR spectroscopic fingerprintings, reported in parts per million (ppm), FIDs (free induction decays) were zero filled and Fourier transformed. A data matrix, composed of C-13 NMR chemical shifts and physicochemical parameters, was constructed and used in PLS regression. C-13 NMR fingerprinting of 100 gasoline samples were employed in the training set, and 50 samples formed the prediction set. In C-13 NMR-PLS models, root-mean square error of calibration (RMSEC) and prediction (RMSEP) were the mains parameters considered to select the "best model", which shown results roughly similar in magnitude to the repeatability and reproducibility of ASTM and NBR officials analytical protocols. C-13 NMR-PLS multivariate regression, as an alternative analytical methodology, offers an appealing procedure for commercial automotive gasoline quality control.

Formato

5711-5718

Identificador

http://dx.doi.org/10.1021/ef300722c

Energy & Fuels. Washington: Amer Chemical Soc, v. 26, n. 9, p. 5711-5718, 2012.

0887-0624

http://hdl.handle.net/11449/26006

10.1021/ef300722c

WOS:000308856000037

Idioma(s)

eng

Publicador

Amer Chemical Soc

Relação

Energy & Fuels

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article