986 resultados para GALLIUM ANTIMONIDE
Alignment of misfit dislocations in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As/InP heterostructure
Resumo:
It was observed with transmission electron microscopy in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As system grown on the (001) InP substrate that misfit dislocation lines deviate [110] directions at an angle with its value depending on the gallium content. Such an abnormal alignment of misfit dislocations is explained in terms of an alloy effect on the formation of single jogs on misfit dislocations in the interface between the III-V ternary compounds. (C) 1998 American Institute of Physics.
Resumo:
The structural characteristics of gallium nitride (GaN) films grown on sapphire(0001) substrates by gas source molecular beam epitaxy (GSMBE) have been investigated using high-resolution synchrotron irradiation X-ray diffraction and cathodoluminescence with a variable energy electron beam. Besides the well-known GaN hexagonal structure, a small portion of cubic phase GaN was observed. The X-ray measurements provide an essential means for the structural identification of the GaN layers. Arising from the variable penetration depth of the electron beam in the cathodoluminescence measurements, it was found that the fraction of the GaN cubic-phase typically increased as the probing depth was increased. The results suggest that the GaN cubic phase is mostly located near the interface between the substrate and GaN layer due to the initial nucleation.
Resumo:
Wurtzite GaN films have been grown on (001) Si substrates using gamma-Al2O3 as an intermediate layer by low pressure (similar to 76 Torr) metalorganic chemical vapor deposition. Reflection high energy electron diffraction and double crystal x-ray diffraction measurements revealed that the thin gamma-Al2O3 layer of "compliant" character was an effective intermediate layer for the GaN film grown epitaxially on Si. The narrowest linewidth of the x-ray rocking curve for (0002) diffraction of the 1.3 mu m GaN sample was 54 arcmin. The orientation relationship of GaN/gamma-Al2O3/Si was (0001) GaN parallel to(001) gamma-Al2O3 parallel to(001) Si, [11-20] GaN parallel to[110] gamma-Al2O3 parallel to[110] Si. The photoluminescence measurement for GaN at room temperature exhibited a near band-edge peak of 365 nm (3.4 eV). (C) 1998 American Institute of Physics.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.
Resumo:
Undoped high resistivity (HR) GaN epilayers were grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Thermally stimulated current (TSC) and resistivity measurements have been carried out to investigate deep level traps. Deep levels with activation energies of 1.06eV and 0.85eV were measured in sample 1. Gaussian fitting of TSC spectra showed five deep levels in different samples. (c) 2006 WILEY VCH Vertag GmbH & Co. KGaA, Weinheim
Resumo:
The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.
Resumo:
In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.
Resumo:
A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.
Resumo:
Intervalley GAMMA-X deformation-potential constants (IVDP's) have been calculated by use of a first-principles pseudopotential method for the III-V zinc-blende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. When the calculated IVDP's of LA phonons for GaP, InP, and InAs and of LO phonons for AlAs, AlSb, GaAs, GaSb, and InSb are compared with results of a previous calculation that used the empirical pseudopotential method (EPM) and a rigid-ion approximation, good agreement is found. However, our ab initio pseudopotential results on IVDP's of LA phonons for AlAs, AlSb, GaAs, GaSb, and InSb and of LO phonons for GaP, InP, and InAs are about one order of magnitude smaller than those obtained by use of EPM calculations, indicating that the electron redistribution accompanying crystal-lattice deformation has a significant effect on GAMMA-X intervalley scattering for these phonon modes when the anions are being displaced. In our calculations the LA- and LO-phonon modes at the X point have been evaluated in the frozen-phonon approximation. We have also obtained the LAX- and LOX-phonon frequencies for these materials from total-energy calculations, which agree very well with experimental values for these semiconductors. We have also calculated GAMMA-X hole-phonon scattering matrix elements for the top valence bands in these nine semiconductors, from which the GAMMA-X IVDP's of the top valence bands for the longitudinal phonons and transverse phonons are evaluated, respectively.
Resumo:
The investigation of deep levels of argon-implanted LEC-grown semi-insulating GaAs with implantation dosages ranging from 1 x 10(11) to 1 x 10(15) cm-2 has been performed. Using a photoinduced transient-current spectroscopy (PITCS) it was demonstrated that, for implantation dosages below 1 X 10(13) cm-2, a negative peak or negative transient current (NTC) was observed in the temperature range from 330 to 350 K. The magnitude of this negative peak increased with dosage up to a level of 1 X 10(12) cm-2, beyond which it decreased with dosage. The dosage dependence of the EL3 peak height and the resistance of the specimen have also been investigated. It was observed that the variation of the EL3 peak height with dosage was similar to the variation of the magnitude of the negative peak, that is the EL3 peak height likewise increased with dosage up to 1 X 10(12) cm-2, and then decreased. The resistance of the original high-resistivity specimen dropped abruptly when the dosage reached 1 X 10(12) cm-2. This critical dosage (1 X 10(12) cm-2) was found to be a threshold for the generation of a highly disordered state.
Resumo:
The basic idea of a defect model of photoconversion by an oxygen impurity in semi-insulating GaAs, proposed in an earlier paper, is described in a systematic way. All experiments related to this defect, including high-resolution spectroscopic measurements, piezospectroscopic study, and recent measurements on electronic energy levels, are explained on the basis of this defect model. The predictions of the model are in good agreement with the experiments. A special negative-U mechanism in this defect is discussed in detail with an emphasis on the stability of the charge states. The theoretical basis of using a self-consistent bond-orbital model in the calculation is also given.
Resumo:
Longitudinal zone boundary X phonon frequencies have been calculated by a first principles pseudopotential method for III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. The phonon frequencies have been evaluated from total energy calculations in the frozen phonon approximation. The calculated phonon frequencies agree very well with the experimental values.
Resumo:
Films of GaN have been grown using a modified MBE technique in which the active nitrogen is supplied from an RF plasma source. Wurtzite films grown on (001) oriented GaAs substrates show highly defective, ordered polycrystalline growth with a columnar structure, the (0001) planes of the layers being parallel to the (001) planes of the GaAs substrate. Films grown using a coincident As flux, however, have a single crystal zinc-blende growth mode. They have better structural and optical properties. To improve the properties of the wurtzite films we have studied the growth of such films on (111) oriented GaAs and GaP substrates. The improved structural properties of such films, assessed using X-ray and TEM method, correlate with better low-temperature FL.