995 resultados para Botterill, Jason
Resumo:
This article describes investigations into the development of supramolecular systems capable of sensing anions through either displacement type assays or molecular motion. An electron deficient naphthalene diimide thread and electron rich isophthalamide naphthohydroquinone macrocycle was shown to form a coloured pseudorotaxane assembly. Investigations into the ability of such interpenetrated systems to sense anions colorimetrically were undertaken. Anion complexation to the isophthalamide group of the macrocycle causes displacement of the naphthodiimide thread resulting in the loss of colour. The enhanced mechanically bonded binding strength between the naphthodiimide axle and the naphthohydroquinone groups of the macrocycle wheel in the corresponding rotaxane structure however, was found to negate the anion induced displacement process.
Resumo:
In dynamic and uncertain environments such as healthcare, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. The uncertainty stems from the unpredictability of users’ operational needs as well as their private incentives to misuse permissions. In Role Based Access Control (RBAC), a user’s legitimate access request may be denied because its need has not been anticipated by the security administrator. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. This paper introduces a novel approach to access control under uncertainty and presents it in the context of RBAC. By taking insights from the field of economics, in particular the insurance literature, we propose a formal model where the value of resources are explicitly defined and an RBAC policy (entailing those predictable access needs) is only used as a reference point to determine the price each user has to pay for access, as opposed to representing hard and fast rules that are always rigidly applied.
Resumo:
In dynamic and uncertain environments, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. Risk-based approaches to access control attempt to address this problem by allocating a limited budget to users, through which they pay for the exceptions deemed necessary. So far the primary focus has been on how to incorporate the notion of budget into access control rather than what or if there is an optimal amount of budget to allocate to users. In this paper we discuss the problems that arise from a sub-optimal allocation of budget and introduce a generalised characterisation of an optimal budget allocation function that maximises organisations expected benefit in the presence of self-interested employees and costly audit.
Resumo:
This paper offers a reply to Jochen Runde's critical appraisal of the ontological framework underpinning Dopfer and Potts's (2008) General Theory of Economic Evolution. We argue that Runde's comprehensive critique contains several of what we perceive to be misunderstandings in relation to the key concepts of ‘generic’ and ‘meso’ that we seek here to unpack and redress.
Resumo:
Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.
Resumo:
This project focused on the first application of the copper catalyzed azide alkyne cycloaddition reaction for the generation of novel profluorescent systems. Through this approach four novel profluorescent nitroxides were prepared both rapidly and in good yield from coumarin and nitroxide CuAAC coupling partners. Specifically, 7-hydroxy, 7-diethylamino, 6-bromo and unsubstituted coumarin analogues bearing an azide group in the 3-position were prepared and conjugatively joined to an alkyne isoindoline nitroxide previously reported by our group. To explore the impact of the nitroxide moiety on the fluorescence of these systems, methoxyamine analogues of the corresponding nitroxide analogues were prepared. Spectrophotometric analysis of these methoxyamine analogues revealed that the aromatic systems possessed high quantum yields. However, the quantum yield efficiency was found to be dependent on the presence of electron donating substituents in the 7-position of the coumarin motif, which enhanced the charge-transfer character of the system. Furthermore, spectrophotometric analysis of nitroxide analogues demonstrated that the triazole effectively mediated fluorophore-nitroxide communication, as evidenced by the low quantum yield values of the nitroxide analogues. These results suggest that this technique can be used to conjugatively join any azide bearing fluorescent system with the key alkyne isoindoline coupling partner allowing for the rapid generation of diverse profluorescent systems.
Resumo:
We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.
Resumo:
This paper presents a guidance approach for aircraft in periodic inspection tasks. The periodic inspection task involves flying to a series of desired fixed points of inspection with specified attitude requirements so that requirements for downward looking sensors, such as cameras, are achieved. We present a solution using a precision guidance law and a bank turn dynamics model. High fidelity simulation studies illustrate the effectiveness of this approach under both ideal (nil-wind) and non-ideal (wind) conditions.
Resumo:
Fixed-wing aircraft equipped with downward pointing cameras and/or LiDAR can be used for inspecting approximately piecewise linear assets such as oil-gas pipelines, roads and power-lines. Automatic control of such aircraft is important from a productivity and safety point of view (long periods of precision manual flight at low-altitude is not considered reasonable from a safety perspective). This paper investigates the effect of any unwanted coupling between guidance and autopilot loops (typically caused by unmodeled delays in the aircraft’s response), and the specific impact of any unwanted dynamics on the performance of aircraft undertaking inspection of piecewise linear corridor assets (such as powerlines). Simulation studies and experimental flight tests are used to demonstrate the benefits of a simple compensator in mitigating the unwanted lateral oscillatory behaviour (or coupling) that is caused by unmodeled time constants in the aircraft dynamics.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.