940 resultados para system dynamics performance
Resumo:
For the paper mill profitability it is crucial to minimize overproduction and underproduction. Overproduction and underproduction both generate undesired costs and profit losses in paper mill production. This master’s thesis examines paper production order fulfillment subject from paper production level point of view. Research and development approach is selected due to clarification requirements in lately implemented manufacturing execution system. Manufacturing execution systems are generally expected to offer reliable and accurate information about mill production details. However, confusions are likely to occur after implementation of new manufacturing execution system. These confusions are usually harmful and become cumulatively more influential the longer they keep occurring. In this master’s thesis is presented actions to improve order fulfillment at paper mill production level. Central points of the improvement actions are a model for successful order fulfillment in paper mill production and manufacturing execution system catalogue configuration redesign. Improvement actions are implemented in Jokilaakso paper production plant and it is examined as a case study. In the end of this master’s thesis is presented performance measurements which demonstrate order fulfillment from case Jokilaakso.
Resumo:
This paper concerns the development of drives that use electromechanical rotative motor systems. It is proposed an experimental drive test structure integrated to simulation softwares. The objective of this work is to show that an affordable model validation procedure can be obtained by combining a precision data acquisition with well tuned state-of-the-art simulation packages. This is required for fitting, in the best way, a drive to its load or, inversely, to adapt loads to given drive characteristics.
Resumo:
Tämä kandidaatintyö on kirjallisuustutkimus, joka selventää lukijalle mitä tarkoittaa käsite Model-Based Management (MBM). Työssä tarkastellaan keskeisiä suuntauksia, joihin MBM pohjautuu. Lisäksi tutkitaan miksi MBM on kehittynyt ja miten sitä voidaan hyödyntää yrityksissä. Nykyiset käytössä olevat johtamismallit ovat aikaansa jäljessä, eivätkä ne hyödynnä nykyteknologian luomia mahdollisuuksia. Teknologian kehityksen myötä tiedonsaanti on helpottunut ja monipuolistunut. Globalisaation seurauksena organisaatioiden toimintaympäristöt ovat monimutkaistuneet ja organisaatioiden rakenteet ovat muuttuneet. Tiedonsaannin helppous yhdistettynä yritysten monimutkaisiin rakenteisiin aiheuttaa ongelmia yrityksen johtamisen ja hallinnan kannalta. Johtajat eivät kykene ymmärtämään kokonaisuuksia, joiden kanssa he ovat tekemisissä. Kokonaisuuksien ymmärtämisessä hyödynnetään systeemiajattelua ja mallintamista. Malleja on käytetty yrityksissä jo pitkään johtamisen apuna. MBM pohjautuu siihen, että mallit ovat johtamisen lähtökohta. Mallit auttavat ymmärtämään kokonaisuuksia ja hahmottamaan eri tekijöiden yhteyksiä toisiinsa. MBM:n näkökulmasta organisaation rakenteiden mallintaminen on elintärkeää sen toimintakyvyn kannalta.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
Strateginen suorituskyvyn mittaaminen ja johtaminen ovat viimeisten vuosikymmenien aikana, nopeasti muuttuvassa toimintaympäristössä, nousseet tärkeiksi tekijöiksi liiketoiminnan kehittämisen kannalta. Tutkimuksen tavoitteena on luoda pienelle kaupan alan verkkoliiketoiminnan yritykselle strateginen suorituskyvyn mittaristo, jossa verkkoliiketoiminnan mittarit on integroitu mittariston eri näkökulmiin. Suorituskyvyn mittaristona tullaan käyttämään Balanced scorecardia eli tasapainotettua tuloskorttia. Tutkimus on laadullinen eli kvalitatiivinen tapaustutkimus. Tutkimuksessa tiedon-keruun pääasiallisena lähteenä toimivat puolistrukturoidut haastattelut. Muina tiedonkeruun lähteinä tutkimuksessa ovat case-yrityksen kahden viimeisimmän vuoden tilinpäätökset ja yrityksen omasta toiminnastaan käyttämät analysointityökalut. Lisäksi epäviralliset keskustelut omistajien kanssa, kuten mittariston mittareiden täsmentäminen, ovat toimineet tutkimuksessa aineistona. Tutkimuksen tuloksena on luotu case-yritykselle strateginen suorituskyvyn mittaristo, mikä käsittää talouden-, asiakkaan-, sisäisten prosessien sekä oppimisen ja kasvun näkökulmien mittareita. Mittaristossa on 12 mittaria. Mittaristossa toteutuu tasapaino ja syy-seuraussuhteet aina oppimisen- ja kasvun mittarista taloudellisiin mittareihin asti, strategian muodostaen mittareiden perustan. Johtopäätöksenä mittaristosta voidaan todeta sen keskittyvän mittaamaan case-yrityksen kannalta oleellisimpia seikkoja. Mittaristossa yhdistyvät yrityksen tavoitteet muun muassa kasvun suhteen ja verkkoliiketoiminnan huomioivat mittarit, joissa teknologialla on keskeinen rooli.
Resumo:
Transportation plays a major role in the gross domestic product of various nations. There are, however, many obstacles hindering the transportation sector. Cost-efficiency along with proper delivery times, high frequency and reliability are not a straightforward task. Furthermore, environmental friendliness has increased the importance of the whole transportation sector. This development will change roles inside the transportation sector. Even now, but especially in the future, decisions regarding the transportation sector will be partly based on emission levels and other externalities originating from transportation in addition to pure transportation costs. There are different factors, which could have an impact on the transportation sector. IMO’s sulphur regulation is estimated to increase the costs of short sea shipping in the Baltic Sea. Price development of energy could change the roles of different transport modes. Higher awareness of the environmental impacts originating from transportation could also have an impact on the price level of more polluting transport modes. According to earlier research, increased inland transportation, modal shift and slowsteaming can be possible results of these changes in the transportation sector. Possible changes in the transportation sector and ways to settle potential obstacles are studied in this dissertation. Furthermore, means to improve cost-efficiency and to decrease environmental impacts originating from transportation are researched. Hypothetical Finnish dry port network and Rail Baltica transport corridor are studied in this dissertation. Benefits and disadvantages are studied with different methodologies. These include gravitational models, which were optimized with linear integer programming, discrete-event and system dynamics simulation, an interview study and a case study. Geographical focus is on the Baltic Sea Region, but the results can be adapted to other geographical locations with discretion. Results indicate that the dry port concept has benefits, but optimization regarding the location and the amount of dry ports plays an important role. In addition, the utilization of dry ports for freight transportation should be carefully operated, since only a certain amount of total freight volume can be cost-efficiently transported through dry ports. If dry ports are created and located without proper planning, they could actually increase transportation costs and delivery times of the whole transportation system. With an optimized dry port network, transportation costs can be lowered in Finland with three to five dry ports. Environmental impacts can be lowered with up to nine dry ports. If more dry ports are added to the system, the benefits become very minor, i.e. payback time of investments becomes extremely long. Furthermore, dry port network could support major transport corridors such as Rail Baltica. Based on an analysis of statistics and interview study, there could be enough freight volume available for Rail Baltica, especially, if North-West Russia is part of the Northern end of the corridor. Transit traffic to and from Russia (especially through the Baltic States) plays a large role. It could be possible to increase transit traffic through Finland by connecting the potential Finnish dry port network and the studied transport corridor. Additionally, sulphur emission regulation is assumed to increase the attractiveness of Rail Baltica in the year 2015. Part of the transit traffic could be rerouted along Rail Baltica instead of the Baltic Sea, since the price level of sea transport could increase due to the sulphur regulation. Both, the hypothetical Finnish dry port network and Rail Baltica transport corridor could benefit each other. The dry port network could gain more market share from Russia, but also from Central Europe, which is the other end of Rail Baltica. In addition, further Eastern countries could also be connected to achieve higher potential freight volume by rail.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
La douleur est une expérience perceptive comportant de nombreuses dimensions. Ces dimensions de douleur sont inter-reliées et recrutent des réseaux neuronaux qui traitent les informations correspondantes. L’élucidation de l'architecture fonctionnelle qui supporte les différents aspects perceptifs de l'expérience est donc une étape fondamentale pour notre compréhension du rôle fonctionnel des différentes régions de la matrice cérébrale de la douleur dans les circuits corticaux qui sous tendent l'expérience subjective de la douleur. Parmi les diverses régions du cerveau impliquées dans le traitement de l'information nociceptive, le cortex somatosensoriel primaire et secondaire (S1 et S2) sont les principales régions généralement associées au traitement de l'aspect sensori-discriminatif de la douleur. Toutefois, l'organisation fonctionnelle dans ces régions somato-sensorielles n’est pas complètement claire et relativement peu d'études ont examiné directement l'intégration de l'information entre les régions somatiques sensorielles. Ainsi, plusieurs questions demeurent concernant la relation hiérarchique entre S1 et S2, ainsi que le rôle fonctionnel des connexions inter-hémisphériques des régions somatiques sensorielles homologues. De même, le traitement en série ou en parallèle au sein du système somatosensoriel constitue un autre élément de questionnement qui nécessite un examen plus approfondi. Le but de la présente étude était de tester un certain nombre d'hypothèses sur la causalité dans les interactions fonctionnelle entre S1 et S2, alors que les sujets recevaient des chocs électriques douloureux. Nous avons mis en place une méthode de modélisation de la connectivité, qui utilise une description de causalité de la dynamique du système, afin d'étudier les interactions entre les sites d'activation définie par un ensemble de données provenant d'une étude d'imagerie fonctionnelle. Notre paradigme est constitué de 3 session expérimentales en utilisant des chocs électriques à trois différents niveaux d’intensité, soit modérément douloureux (niveau 3), soit légèrement douloureux (niveau 2), soit complètement non douloureux (niveau 1). Par conséquent, notre paradigme nous a permis d'étudier comment l'intensité du stimulus est codé dans notre réseau d'intérêt, et comment la connectivité des différentes régions est modulée dans les conditions de stimulation différentes. Nos résultats sont en faveur du mode sériel de traitement de l’information somatosensorielle nociceptive avec un apport prédominant de la voie thalamocorticale vers S1 controlatérale au site de stimulation. Nos résultats impliquent que l'information se propage de S1 controlatéral à travers notre réseau d'intérêt composé des cortex S1 bilatéraux et S2. Notre analyse indique que la connexion S1→S2 est renforcée par la douleur, ce qui suggère que S2 est plus élevé dans la hiérarchie du traitement de la douleur que S1, conformément aux conclusions précédentes neurophysiologiques et de magnétoencéphalographie. Enfin, notre analyse fournit des preuves de l'entrée de l'information somatosensorielle dans l'hémisphère controlatéral au côté de stimulation, avec des connexions inter-hémisphériques responsable du transfert de l'information à l'hémisphère ipsilatéral.
Resumo:
The main goal of this thesis is to study the dynamics of Josephson junction system in the presence of an external rf-biasing.A system of two chaotically synchronized Josephson junction is studied.The change in the dynamics of the system in the presence of at phase difference between the applied fields is considered. Control of chaos is very important from an application point of view. The role Of phase difference in controlling chaos is discussed.An array of three Josephson junctions iS studied for the effect of phase difference on chaos and synchronization and the argument is extended for a system of N Josephson junctions. In the presence of a phase difference between the external fields, the system exhibits periodic behavior with a definite phase relationship between all the three junctions.Itdeals with an array of three Josephson junctions with a time delay in the coupling term. It is observed that only the outer systems synchronize while the middle system remain uncorrelated with t-he other two. The effect of phase difference between the applied fields and time-delay on system dynamics and synchronization is also studied. We study the influence of an applied ac biasing on a serniannular Josephson junction. It is found the magnetic field along with the biasing induces creation and annihilation of fluxons in the junction. The I-V characteristics of the junction is studied by considering the surface loss term also in the model equation. The system is found to exhibit chaotic behavior in the presence of ac biasing.
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.
Resumo:
This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.
Resumo:
KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.
Resumo:
La simulación al servicio de la academia - Reflexiones y aplicaciones de la Dinámica de Sistemas en Colombia 2011, son las memorias del noveno encuentro colombiano de Dinámica de Sistemas celebrado en la Universidad del Rosario los días 14, 15 y 16 de septiembre de 2011, en el cual participaron ponentes de universidades nacionales e internacionales y se contó con la presencia de expertos en el tema quienes acompañaron y lideraron el desarrollo de las exposiciones durante los tres días. Diego Cardona Eng MSc PhD, organizador del evento, recoge la producción de sus participantes y acá se presenta la compilación de los documentos presentados.
Resumo:
El pensamiento sistémico es una manera de interpretar y comprender los fenómenos, que difiere de la forma convencional denominada reduccionista en la que no se realiza la comprensión a través de la descomposición de las partes, sino que se realiza haciendo énfasis en la comprensión del sistema como un todo y en las interrelaciones que se desprenden del sistema; por tanto la interpretación no se da a partir de un análisis de causa efecto, sino una comprensión del sistema dentro del contexto de un todo superior. Esta investigación se realiza aplicando el pensamiento sistémico en un caso práctico de una organización como es el Hospital Engativá, se hace la interpretación de la organización desde el punto de vista sistémico, realizando un diagrama causal que permite leer la organización desde este punto de vista. Se desarrolló el modelo en una herramienta para dinámica de sistemas y se limita el diseño y la simulación al Proceso de Cartera – Gestión Cobro y Recaudo, realizando una lectura e interpretación de los resultados y hallazgos arrojados por el modelo. Por último se concluye que es factible dirigir una organización desde el pensamiento sistémico y que mejora la toma de decisiones.