967 resultados para electric current
Resumo:
AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors are currently investigating the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. In this paper, a 2D finite element model based on the H formulation is introduced. The model is then used to calculate the transport AC loss using both a bulk approximation and modeling the individual turns in a racetrack-shaped coil. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's superconducting permanent magnet synchronous motor design. The transport AC loss of a stator coil is measured using an electrical method based on inductive compensation using a variable mutual inductance. The simulated results are compared with the experimental results, verifying the validity of the model, and ways to improve the accuracy of the model are discussed. © 2010 IEEE.
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.
Resumo:
In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.
Resumo:
A mille-feuille structured amorphous selenium (a-Se)-arsenic selenide (As2Se3) multi-layered thin film and a mixed amorphous Se-As2Se3 film is compared from a durability perspective and photo-electric perspective. The former is durable to incident laser induced degradation after numerous laser scans and does not crystallise till 105 of annealing, both of which are improved properties from the mixed evaporated film. In terms of photo-electric properties, the ratio between the photocurrent and the dark current improved whereas the increase of the dark current was higher than that of As2Se3 due to the unique current path developed within the mille-feuille structure. Implementing this structure into various amorphous semiconductors may open up a new possibility towards structure-sensitive amorphous photoconductors. © 2013 Elsevier B.V.
Resumo:
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.
Resumo:
The influence of a transverse magnetic field up to 13 T at 1.6 K on the current-voltage, I (V), characteristics of a doped GaAs/AlAs superlattice was investigated. Current hysteresis was observed in the domain formation regions of the I (V) at zero magnetic field while applied bias was swept in both up (0-6 V) and down (6-0 V) directions. The magnitude of current hysteresis was reduced and finally disappeared with increasing transverse magnetic field. The effect is explained as the modification of the current density versus electric field characteristic by transverse magnetic fields. Calculated results based on the tunnelling current formula in a superlattice support our interpretation.
Resumo:
We study the spin-dependent electron transport in a special magnetic-electric superlattice periodically modulated by parallel ferromagnetic metal stripes and Schottky normal-metal stripes. The results show that, the spin-polarized current can be well controllable by modulating the magnetic strength of the ferromagnetic stripes or the voltage applied to the Schottky normal-metal stripes. It is obvious that, to the system of the magnetic superlattice, the polarized current can be enhanced by the magnetic strength of ferromagnetic stripes. Nevertheless, it is found that, for the magnetic-electric superlattice, the polarized current can also be remarkably advanced by the voltage applied to the Schottky normal-metal stripes. These results may indicate a useable approach for tunable spintronic devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
The influence of electric fields on surface migration of Gallium (Ga) and Nitrogen (N) adatoms is studied during GaN growth by molecular beam epitaxy (MBE). When a direct current (DC) is used to heat the sample, long distance migration of Ga adatoms and diffusion asymmetry of N adatoms at steps are observed. On the other hand, if an alternating current (AC) is used, no such preferential adatom migration is found. This effect is attributed to the effective positive charges of surface adatoms. representing an effect of electro-migration. The implications of such current-induced surface migration to GaN epitaxy are subsequently investigated. It is seen to firstly change the distribution of Ga adatoms on a growing surface, and thus make the growth to be Ga-limited at one side of the sample but N-limited at the other side. This leads to different optical qualities of the film and different morphologies of the surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We observed the decrease of the hysteresis effect and the transition from the stable to the dynamic domain regime in doped superlattices with increasing temperature. The current-voltage characteristics and the behaviours of the domain boundary are dominated by the temperature-dependent lineshape of the electric field dependence of the drift velocity (V(F)), As the peak-valley ratio in the V(F) curve decreases with increasing temperature, the hysteresis will diminish and temporal current self-oscillations will occur. The simulated calculation, which takes the difference in V(F) curves into consideration, gives a good agreement with the experimental results.
Resumo:
We have observed the transition from static to dynamic electric field domain formation induced by a transverse magnetic field and the sample temperature in a doped GaAs/AlAs superlattice. The observations can be very well explained by a general analysis of instabilities and oscillations of the sequential tunnelling current in superlattices based solely on the magnitude of the negative differential resistance region in the tunnelling characteristic of a single barrier. Both increasing magnetic field and sample temperature change the negative differential resistance and cause the transition between static and dynamic electric field domain formation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An anomalous behavior of the current self-oscillation frequency is observed in the dynamic de voltage bands, emerging from each sawtoothlike branch of the current-voltage characteristic of a doped GaAs/A1As superlattice in the transition process from static to dynamic electric field domain formations. Varying the applied de voltage at a fixed temperature, we find that the frequency increases while the averaged current decreases. Inside each voltage band, the frequency has a strong voltage dependence in the temperature range where the averaged current changes with the applied de voltage. This dependence can be understood in terms of motion of the system along a limit cycle.
Resumo:
We investigate the transition from static to dynamic electric field domains (EFDs) in a doped GaAs/AlAs superlattice (SL). We show that a transverse magnetic field and/or the temperature can induce current self-oscillations. This observation can be attributed to the negative differential resistance (NDR) effect. Transverse magnetic field and the temperature can increase the NDR of a doped SL. A large NDR can lead to an unstable EFD in a certain range of d.c. bias. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate the influence of a transverse magnetic field on the current-voltage characteristics of a doped GaAs/AlAs superlattice at 1.6 K. The current transport regimes-stable electric field domain formation and current selfoscillation-are observed with increasing transverse magnetic field up to 13 T. Magnetic-field-induced redistribution of electron momentum and energy is identified as the mechanism triggering the switching over of one process to another lending to a change in the dependence of the effective electron drift velocity on electric field. Simulation yields excellent agreement with observed results.