986 resultados para Piezoresponse force microscopy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myoglobin molecules were deposited on a surfactant sodium dodecyl sulfate modified HOPG surface and imaged in air with a high resolution scanning tunneling microscope (STM) for the first time. STM images exhibit not only ordered arrays of the surfactant m

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Native and unfolded glucose oxidase (GOD) structures have been directly observed with scanning tunnelling microscopy (STM) for the first time. STM images show an opening butterfly-shaped pattern for the native GOD. When GOD molecules are extended on anodi

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4'-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of similar to 70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of similar to 140 mm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into -P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of similar to 20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (D...A), (A...A), (D...D) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched exponential behavior 1-exp[-(t/k)(d)] with exponent d>1, which is distinct from a dispersive random walk process with d <. The latter has been observed in polycrystalline films for which retention loss was associated with grain boundaries. The leakage current indicates power law scaling at short length scales, which strongly depends on the applied electric field. Additional information of the microstructure, which contributes to an explanation of the presence of leakage currents, is presented with high resolution transmission electron microscopy analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse rapporte le greffage chimique de brosses de polymères neutres de poly(acrylate de tert-butyle) (PtBA) et de brosses chargées d’acide polyacrylique (PAA) sur des substrats de mica afin d’étudier leur conformation en fonction de la densité de greffage, du pH et de la force ionique. Le greffage est réalisé par polymérisation contrôlée par transfert d’atome (ATRP) initiée depuis la surface de mica afin de contrôler la croissance du polymère et sa densité de greffage. L’étude de la conformation des brosses de PtBA et de PAA a été menée avec la technique AFM en mesurant les épaisseurs des films à sec et gonflés sous différentes conditions de solvant, de pH et de force ionique. Une monocouche d’amorceurs est tout d’abord greffée sur du mica porteur de groupes hydroxyles créés par plasma (Ar/H2O). Cette couche a été caractérisée par des mesures d’angle de contact et par la technique TOF-SIMS. L’amorceur greffé a ensuite permis d’initier l’ATRP directement depuis la surface pour former des brosses neutres de PtBA liés de façon covalente au mica. La croissance linéaire de l’épaisseur du film avec la masse molaire du polymère en solution et le taux de conversion montre que la polymérisation est contrôlée. De plus, la ré-initiation des chaînes greffées atteste du caractère vivant de la polymérisation. L’hydrolyse des brosses de PtBA, confirmée par des mesures d’angle de contact, d’épaisseur et par FT-IR, conduit à des brosses de PAA. Les différentes couches greffées sont stables à l’air, en milieu organique et en milieu aqueux et leur gonflement est réversible. Le degreffage de la couche de PAA est observé suite à une longue exposition à pH basique. Cette étude représente le premier exemple de brosses greffées chimiquement sur du mica par polymérisation initiée depuis la surface. La variation des paramètres de la réaction de greffage de l’amorceur, tels que la concentration et la durée de réaction, a permis de contrôler le taux de recouvrement de l’amorceur et la densité de greffage du polymère. Une grande gamme de taux de recouvrement de l’amorceur est accessible et se traduit par un intervalle de densités de greffage allant de faibles à élevées (e.g. 0,04 chaîne/nm2 à 0,5 chaîne/nm2). L’étude de la conformation des chaînes de PtBA dans le DMF montre que cet intervalle de densités recouvre le régime crêpe au régime brosse. Le gonflement de brosses de PAA et la variation de la hauteur de la brosse L ont été étudiés en fonction de la densité de greffage, du pH et du sel ajouté cs (NaCl). Une transition brusque de collapsée à étirée est observée avec l’augmentation du pH, indépendamment de la densité de greffage. A pH neutre, les brosses sont collapsées et se comportent comme des brosses neutres en mauvais solvant. A pH basique, les brosses sont gonflées et chargées et se trouvent dans un régime de Pincus caractéristique des polyélectrolytes forts. En présence de sel, les charges sont partiellement écrantées et les répulsions électrostatiques dominent toujours dans la brosse. Cette étude contribue à une meilleure compréhension du comportement complexe des brosses de polyélectrolytes faibles et apporte un soutien expérimental à la théorie sur le comportement de ces brosses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell membranes are composed of two-dimensional bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, we present direct visualization of cell membrane nanodomains by helium ion microscopy (HIM). We show that HIM is capable to image biological specimens without any conductive coating, and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ~15 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)