999 resultados para Phase Epitaxy
Resumo:
The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.
Resumo:
High-quality GaNAs/GaAs quantum wells with high substitutional N concentrations, grown by molecular-beam epitaxy, are demonstrated using a reduced growth rate in a range of 0.125-1 mu m/h. No phase separation is observed and the GaNAs well thickness is limited by the critical thickness. Strong room-temperature photoluminescence with a record long wavelength of 1.44 mu m is obtained from an 18-nm-thick GaN0.06As0.94/GaAs quantum well. (C) 2005 American Institute of Physics.
Resumo:
Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.
Resumo:
The InGaNAs(Sb)/(GaNAs)/GaAs quantum wells (QWs) emitting at 1.3-1.55 mu m have been grown by molecular beam epitaxy (MBE). The parameters of the radio frequency (RF) such as RF power and flow rate are optimized to reduce the damages from the ions or energetic species. The growth temperature is carefully controlled to prevent the phase segregation and strain relaxation. The effects of Sb on the wavelength and quality are investigated. The GaNAs barrier is used to extend the wavelength and reduce the strain. A 1.5865 mu m InGaNAs(Sb)/GaNAs SQW edge emitting laser lasing at room temperature at continuous wave operation mode is demonstrated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.
Resumo:
Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
Strains in cubic GaN films grown on GaAs (001) were measured by a triple-axis x-ray diffraction method. Residual strains in the as-grown epitaxial films were in compression, contrary to the predicted tensile strains caused by large lattice mismatch between epilayers and GaAs substrates (20%). It was also found that the relief of strains in the GaN films has a complicated dependence on the growth conditions. We interpreted this as the interaction between the lattice mismatch and thermal mismatch stresses. The fully relaxed lattice constants of cubic GaN are determined to be 4.5038 +/- 0.0009 Angstrom, which is in excellent agreement with the theoretical prediction of 4.503 Angstrom. (C) 2000 American Institute of Physics. [S0021-8979(00)07918-4].
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.
Resumo:
A phenomenological model is proposed to explain quantitatively the interesting compositional dependence on the Ge incorporation rate during low-temperature growth of Si1-xGex by disilane and solid-Ge molecular beam epitaxy, based on enhanced hydrogen desorption from Si sites due to the presence of Ge atoms. The hydrogen desorption rate constant for disilane on Si sites is fitted to an exponential function of Ge incorporation rate and a possible physical explanation is discussed. Simulated results are in excellent agreement with experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)02109-X].
Resumo:
The feasibility of growing device-quality cubic GaN/GaAs(001) films by metal organic chemical vapor deposition has been demonstrated. The optical quality of the GaN films was characterized by room-temperature photoluminescence measurements, which shows a full width at half maximum of 46 meV. The structural quality of the films was investigated by transmission electron microscopy. There are submicron-size grains free from threading dislocations and stacking faults. More importantly, a cubic-phase GaN blue light-emitting diode has been fabricated. The device process, which is very simple and compatible with current GaAs technology, indicates a promising future for the blue light-emitting diode. (C) 1999 American Institute of Physics. [S0003-6951(99)01416-3].
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The fabrication of organic semiconductor thin films is extremely important in organic electronic devices. This tutorial review-which should particularly appeal to chemists and physicists interested in organic thin-film growth, organic electronic devices and organic semiconductor materials-summarizes the method of weak epitaxy growth (WEG) and its application in the fabrication of high quality organic semiconductor thin films.
Resumo:
InAlN thin films and InAlN/GaN heterostructures have been intensively studied over recent years due to their applications in a variety of devices, including high electron mobility transistors (HEMTs). However, the quality of InAlN remains relatively poor with basic material and structural characteristics remain unclear.
Molecular beam epitaxy (MBE) is used to synthesize the materials for this research, as MBE is a widely used tool for semiconductor growth but has rarely been explored for InAlN growth. X-ray photoelectron spectroscopy (XPS) is used to determine the electronic and chemical characteristics of InAlN surfaces. This tool is used for the first time in application to MBE-grown InAlN and heterostructures for the characterization of surface oxides, the bare surface barrier height (BSBH), and valence band offsets (VBOs).
The surface properties of InAlN are studied in relation to surface oxide characteristics and formation. First, the native oxide compositions are studied. Then, methods enabling the effective removal of the native oxides are found. Finally, annealing is explored for the reliable growth of surface thermal oxides.
The bulk properties of InAlN films are studied. The unintentional compositional grading in InAlN during MBE growth is discovered and found to be affected by strain and relaxation. The optical characterization of InAlN using spectroscopy ellipsometry (SE) is also developed and reveals that a two-phase InAlN model applies to MBE-grown InAlN due to its natural formation of a nanocolumnar microstructure. The insertion of an AlN interlayer is found to mitigate the formation of this microstructure and increases mobility of whole structure by fivefold.
Finally, the synthesis and characterization of InAlN/GaN HEMT device structures are explored. The density and energy distribution of surface states are studied with relationships to surface chemical composition and surface oxide. The determination of the VBOs of InAlN/GaN structures with different In compositions are discussed at last.