933 resultados para MARROW-TRANSPLANTATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversial topic of HSC and MSC transdifferentiation into central nervous system cells but focus on the neurotrophic, tissue sparing, and reparative action of MSC grafts in the context of the spinal cord injury (SCI) milieu. We then discuss some of the specific issues related to the translation of HSC and MSC therapies for patients with SCI and present a comprehensive critique of the current bone marrow cell clinical trials for the treatment of SCI to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow stromal cells (BMSCs) have the potential to improve functional recovery in patients with spinal cord injury (SCI); however, they are limited by low survival rates after transplantation in the injured tissue. Our objective was to clarify the effects of a temporal blockade of interleukin 6 (IL-6)/IL-6 receptor (IL-6R) engagement using an anti-mouse IL-6R monoclonal antibody (MR16-1) on the survival rate of BMSCs after their transplantation in a mouse model of contusion SCI. MR16-1 cotreatment improved the survival rate of transplanted BMSCs, allowing some BMSCs to differentiate into neurons and astrocytes, and improved locomotor function recovery compared with BMSC transplantation or MR16-1 treatment alone. The death of transplanted BMSCs could be mainly related to apoptosis rather than necrosis. Transplantation of BMSC with cotreatment of MR16-1 was associated with a decrease of some proinflammatory cytokines, an increase of neurotrophic factors, decreased apoptosis rates of transplanted BMSCs, and enhanced expression of survival factors Akt and extracellular signal-regulated protein kinases 1/2. We conclude that MR16-1 treatment combined with BMSC transplants helped rescue neuronal cells and axons after contusion SCI better than BMSCs alone by modulating the inflammatory/immune responses and decreasing apoptosis. © 2013 by the American Association of Neuropathologists, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In animal models, transplantation of bone marrow stromal cells (MSC) into the spinal cord following injury enhances axonal regeneration and promotes functional recovery. How these improvements come about is currently unclear. We have examined the interaction of MSC with neurons, using an established in vitro model of nerve growth, in the presence of substrate-bound extracellular molecules that are thought to inhibit axonal regeneration, i.e., neural proteoglycans (CSPG), myelin associated glycoprotein (MAG) and Nogo-A. Each of these molecules repelled neurite outgrowth from dorsal root ganglia (DRG) in a concentration-dependent manner. However, these nerve-inhibitory effects were much reduced in MSC/DRG co-cultures. Video microscopy demonstrated that MSC acted as "cellular bridges" and also "towed" neurites over the nerve-inhibitory substrates. Whereas conditioned medium from MSC cultures stimulated DRG neurite outgrowth over type I collagen, it did not promote outgrowth over CSPG, MAG or Nogo-A. These findings suggest that MSC transplantation may promote axonal regeneration both by stimulating nerve growth via secreted factors and also by reducing the nerve-inhibitory effects of the extracellular molecules present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states. © 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La transplantation de sang de cordon ombilical (TSCO) constitue un traitement de choix pour une multitude de pathologies hématologiques malignes et non malignes chez l’enfant et dans certains cas l’adulte. La TSCO est associée à certaines complications, dont une reconstitution immunitaire plus lente et une incidence élevée d’infections opportunistes, notamment celles reliées au cytomégalovirus (CMV) et au virus varicella-zoster (VZV). Dans le cadre de ce travail, nous nous sommes intéressés dans un premier temps à la caractérisation de la reconstitution immunitaire spécifique au CMV et au VZV. Nos résultats ont démontré que la reconstitution de l’immunité cellulaire ne requiert ni un statut séropositif pré-transplantation ni le développement de la maladie. De plus, des reconstitutions spontanées ont été détectées chez certains patients séronégatifs vis-à-vis du CMV ou du VZV. Outre le fait qu’elle se manifeste surtout à partir de 6 mois post-transplantation, ladite reconstitution mérite le qualificatif de « protectrice » en termes de réactivations virales et du développement de signes cliniques lorsqu’une fréquence de 150 cellules produisant l’IFN-γ/million est dépassée. Toutefois, moins de 5% des patients développent une réponse T anti-VZV et anti-CMV au cours 100 premiers jours suivant la TSCO. Il est donc possible que les lymphocytes CD8+ T provenant du SCO, comparativement à leurs homologues provenant de la moelle osseuse (MO), présentent un défaut de fonctionnalité, communément appelé « épuisement clonal ». La caractérisation du répertoire de récepteurs inhibiteurs exprimés par les cellules T CD8+ suivant la TSCO ou la transplantation de moelle osseuse (TMO) a révélé une augmentation significative de la fréquence des cellules exprimant PD-1 tôt suivant la transplantation. Cette population, caractérisée majoritairement par un phénotype effecteur-mémoire (EM), démontre une perte significative de la capacité proliférative et exprime moins d'IFN-γ, d'IL-2, de TNF-α et de CD107a. Une meilleure caractérisation de la reconstitution immunitaire après TSCO permettrait, d'une part de sélectionner des biomarqueurs en vue d’une meilleure gestion des patients à risques de développer des infections virales et/ou de rechuter, et d'autre part d'améliorer leur pronostic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La transplantation de sang de cordon ombilical (TSCO) constitue un traitement de choix pour une multitude de pathologies hématologiques malignes et non malignes chez l’enfant et dans certains cas l’adulte. La TSCO est associée à certaines complications, dont une reconstitution immunitaire plus lente et une incidence élevée d’infections opportunistes, notamment celles reliées au cytomégalovirus (CMV) et au virus varicella-zoster (VZV). Dans le cadre de ce travail, nous nous sommes intéressés dans un premier temps à la caractérisation de la reconstitution immunitaire spécifique au CMV et au VZV. Nos résultats ont démontré que la reconstitution de l’immunité cellulaire ne requiert ni un statut séropositif pré-transplantation ni le développement de la maladie. De plus, des reconstitutions spontanées ont été détectées chez certains patients séronégatifs vis-à-vis du CMV ou du VZV. Outre le fait qu’elle se manifeste surtout à partir de 6 mois post-transplantation, ladite reconstitution mérite le qualificatif de « protectrice » en termes de réactivations virales et du développement de signes cliniques lorsqu’une fréquence de 150 cellules produisant l’IFN-γ/million est dépassée. Toutefois, moins de 5% des patients développent une réponse T anti-VZV et anti-CMV au cours 100 premiers jours suivant la TSCO. Il est donc possible que les lymphocytes CD8+ T provenant du SCO, comparativement à leurs homologues provenant de la moelle osseuse (MO), présentent un défaut de fonctionnalité, communément appelé « épuisement clonal ». La caractérisation du répertoire de récepteurs inhibiteurs exprimés par les cellules T CD8+ suivant la TSCO ou la transplantation de moelle osseuse (TMO) a révélé une augmentation significative de la fréquence des cellules exprimant PD-1 tôt suivant la transplantation. Cette population, caractérisée majoritairement par un phénotype effecteur-mémoire (EM), démontre une perte significative de la capacité proliférative et exprime moins d'IFN-γ, d'IL-2, de TNF-α et de CD107a. Une meilleure caractérisation de la reconstitution immunitaire après TSCO permettrait, d'une part de sélectionner des biomarqueurs en vue d’une meilleure gestion des patients à risques de développer des infections virales et/ou de rechuter, et d'autre part d'améliorer leur pronostic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethics of creating ‘saviour siblings’ for the benefit of another has received much attention, but little consideration has been given to the legal position of those saviours born who may be asked to provide tissue for transplantation to another during childhood. This article examines the ethical issues surrounding minor donation as well as the existing legal framework in the UK and Australia that regulates minors providing tissue for the benefit of another. Against this background the position of minor saviours, who are called upon to donate bone marrow or peripheral blood stem cells, is examined. This analysis suggests that the law does not provide sufficient protection for minor saviours who are called upon to donate to another. It is argued that specific ethical obligations are owed to saviours—that ought to be reflected in the law—in order to protect them from exploitation while they remain minors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine the cellular aging of osteophyte-derived mesenchymal cells (oMSCs) in comparison to patient-matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell-cycle-related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase-positive cells were found to be located perivascularly and were Stro-1 positive. Fifteen cell-cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839-850, 2009. (c) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The periosteum plays an indispensable role in both bone formation and bone defect healing. In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl(2))-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularization. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularization by micro-CT, histomorphometrical and immunohistochemical methods. The results showed that CoCl(2) pre-treated BMSCs induced higher degree of vascularization and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e- caprolactone)–tricalcium phosphate–collagen type I (PCL–TCP–Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL–TCP–Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL–TCP–Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.