951 resultados para JORDAN ALGEBRAS
Resumo:
We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved
Resumo:
In 1996, Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki-Juriaans-Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a Z-order with hyperbolic unit group. In this paper, we complete this classification and give an easy proof that deals with all finite semigroups.
Resumo:
We describe the simple Lie superalgebras arising from the unital structurable superalgebras of characteristic 0 and construct four series of the unital simple structurable superalgebras of Cartan type. We give a classification of simple structurable superalgebras of Cartan type over an algebraically closed field F of characteristic 0. Together with the Faulkner theorem on the classification of classical such superalgebras, it gives a classification of the simple structurable superalgebras over F. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta-Sidki groups. The Lie algebra L is generated by two derivations v(1) = partial derivative(1) + t(0)(p-1) (partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...))))), v(2) = partial derivative(2) + t(1)(p-1) (partial derivative(3) + t(2)(p-1) (partial derivative(4) + t(3)(p-1) (partial derivative(5) + t(4)(p-1) (partial derivative(6) + ...)))) of the truncated polynomial ring K[t(i), i is an element of N vertical bar t(j)(p) =0, i is an element of N] in countably many variables. The associative algebra A generated by v(1), v(2) is equipped with a natural Z circle plus Z-gradation. In this paper we show that for p, which is not representable as p = m(2) + m + 1, m is an element of Z, the algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras. L. Bartholdi [3] andYa. S. Krylyuk [15] proved that for p = m(2) + m + 1 the algebra A is not graded nil. However, we show that the second family of self-similar Lie algebras introduced in [24] and their associative hulls are always Z(p)-graded, graded nil, and are sums of two locally nilpotent subalgebras.
Resumo:
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.
Resumo:
We determine derived representation type of complete finitely generated local and two-point algebras over an algebraically closed field. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We define intrinsic, natural and metrizable topologies T(Omega), T, T(s,Omega) and T(s) in G(Omega), (K) over bar, G(s)(Omega) and (K) over bar (s) respectively. The topology T(Omega) induces T, T(s,Omega) and T(s). The topologies T(s,Omega) and T(s) coincide with the Scarpalezos sharp topologies.
Resumo:
All the demonstrations known to this author of the existence of the Jordan Canonical Form are somewhat complex - usually invoking the use of new spaces, and what not. These demonstrations are usually too difficult for an average Mathematics student to understand how he or she can obtain the Jordan Canonical Form for any square matrix. The method here proposed not only demonstrates the existence of such forms but, additionally, shows how to find them in a step by step manner. I do not claim that the following demonstration is in any way “elegant” (by the standards of elegance in fashion nowadays among mathematicians) but merely simple (undergraduate students taking a fist course in Matrix Algebra would understand how it works).
Resumo:
Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them
Resumo:
A study of the reducibility of the Fock space representation of the q-deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is carried out by using the properties of the Gauss polynomials. When the deformation parameter is a root of unity, an interesting result comes out in the form of a reducibility scheme for the space representation which is based on the classification of the primitive or nonprimitive character of the deformation parameter. An application is carried out for a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is explicitly applied.
Resumo:
The problem of the classification of the extensions of the Virasoro algebra is discussed. It is shown that all H-reduced G(r)-current algebras belong to one of the following basic algebraic structures: local quadratic W-algebras, rational U-algebras, nonlocal W-algebras, nonlocal quadratic WV-algebras and rational nonlocal UV-algebras. The main new features of the quantum Ir-algebras and their heighest weight representations are demonstrated on the example of the quantum V-3((1,1))-algebra.
Resumo:
We propose to employ deformed commutation relations to treat many-body problems of composite particles. The deformation parameter is interpreted as a measure of the effects of the statistics of the internal degrees of freedom of the composite particles. A simple application of the method is made for the case of a gas of composite bosons.