Irreducibility and compositeness in q-deformed harmonic oscillator algebras


Autoria(s): Galetti, D.; Lunardi, J. T.; Pimentel, B. M.; Ruzzi, M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/09/2002

Resumo

A study of the reducibility of the Fock space representation of the q-deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is carried out by using the properties of the Gauss polynomials. When the deformation parameter is a root of unity, an interesting result comes out in the form of a reducibility scheme for the space representation which is based on the classification of the primitive or nonprimitive character of the deformation parameter. An application is carried out for a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is explicitly applied.

Formato

1673-1687

Identificador

http://dx.doi.org/10.1023/A:1021055000260

International Journal of Theoretical Physics. New York: Kluwer Academic/plenum Publ, v. 41, n. 9, p. 1673-1687, 2002.

0020-7748

http://hdl.handle.net/11449/23243

10.1023/A:1021055000260

WOS:000179181800004

Idioma(s)

eng

Publicador

Kluwer Academic/plenum Publ

Relação

International Journal of Theoretical Physics

Direitos

closedAccess

Palavras-Chave #q-deformed algebras #q-deformed harmonic oscillator #deformation at roots of unity
Tipo

info:eu-repo/semantics/article