903 resultados para Heated cavity
Resumo:
We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.
Resumo:
Hybrid numerical large eddy simulation (NLES), detached eddy simulation (DES) and URANS methods are assessed on a cavity and a labyrinth seal geometry. A high sixth-order discretization scheme is used and is validated using the test case of a two-dimensional vortex. The hybrid approach adopts a new blending function. For the URANS simulations, the flow within the cavity remains steady, and the results show significant variation between models. Surprisingly, low levels of resolved turbulence are observed in the cavity for the DES simulation, and the cavity shear layer remains two dimensional. The hybrid RANS-NLES approach does not suffer from this trait.For the labyrinth seal, both the URANS and DES approaches give low levels of resolved turbulence. The zonal Hamilton-Jacobi approach on the other had given significantly more resolved content. Both DES and hybrid RANS-NLES give good agreement with the experimentally measured velocity profiles. Again, there is significant variation between the URANS models, and swirl velocities are overpredicted. © 2013 John Wiley & Sons, Ltd.
Resumo:
We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © 2012 OSA.
Resumo:
We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © OSA 2012.
Resumo:
We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © 2012 OSA.