918 resultados para Grain Boundary Segregation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO thin films were deposited on glass substrates at room temperature (RT) similar to 500 degrees C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 degrees C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments: the grain size increased and stress relaxed for the films deposited at 200-500 degrees C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that E-g of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 degrees C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The density of states (DOS) above Fermi level of hydrogenated microcrystalline silicon (mu c-Si H) films is correlated to the material microstructure. We use Raman scattering and infrared absorption spectra to characterize the structure of the films made with different hydrogen dilution ratios. The DOS of the films is examined by modulated photocurrent measurement. The results have been accounted for in the framework of a three-phase model comprised of amorphous and crystalline components, with the grain boundary as the third phase. We observed that the DOS increases monotonically as the grain boundary volume fractions f(gb) is increased, which indicates a positive correlation between the DOS and the grain boundary volume fraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CaCu3Ti(4-x)Nb(x)O(12) (x = 0, 0.01, 0.08, 0.2) ceramics were fabricated by a conventional solid-state reaction method. The ceramics showed the body-centered cubic structure without any foreign phases and the grain size decreases with Nb doping. Two Debye-type relaxations were observed for the Nb-doped samples at low frequency and high frequency, respectively. The complex electric modulus analysis revealed that the surface layer, grains and grain boundaries contributed to the dielectric constant. The low-frequency dielectric constant relative to the surface layer decreased to a minimum and then increased with the dc bias voltage at 100 Hz, which were well explained in terms of a model containing two metal oxide semiconductors in series, confirming the surface layer in the ceramics. The shift voltage V-B corresponding to the minimal capacitance increased with increase of the composition x. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to clarify the major factors having confined the efficiencies of as-prepared crystalline silicon thin film (CSiTF) solar cells on the SSP (silicon sheets from powder) ribbons, QE (quantum efficiency) and Suns-V-oc study were performed on the epitaxial CSiTF solar cells fabricated on the SSP ribbons, the SSP ribbons after surface being zone melting recrystallized (ZMR) and single crystalline silicon (sc-Si) substrates. The results show that the epi-layers deposited on the SSP ribbons have rough surfaces, which not only increases the diffusion reflectance on the surfaces but also makes the anti-reflection coatings become structure-loosened, both of which would deteriorate the light trapping effect; in addition, the epi-layers deposited on the SSP ribbons possess poor crystallographic quality, so the heavy grain boundary (GB) recombination limits the diffusion length of the minority carriers in the epi-layers, which makes the as-prepared CSiTF solar cells suffer the worse spectra response at long-wavelength range. Nearly all the dark characteristic parameters of the CSiTF solar cells are far away from the ideal values. The performances of the CSiTF solar cells are especially affected by too high I-02 (the dark saturation current of space charge region) values and too low R-sh (parallel resistance) values. The higher 102 values are mainly caused by the heavy GB recombination resulting from the poor crystallographic qualities of the silicon active layers in the space charge regions, while the lower R-sh values are attributed to the electrical leakage at the un-passivated PN junction or solar cell edges after the solar cells are cut by the laser scriber.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polycrystalline nano-grain-boundary multi-doping ZnO-based nonlinear varistors with higher concentration additives have been fabricated by sol-gel and standard solid-state reaction method, of which the best sample has a very high threshold voltage of E-b = 3300 V/mm. The effect of sintering processes, sintering temperature and sintering time, and that of additive concentration of Bi2O3 on E-b of the samples are systematically investigated. The results show that the great merit of sol-gel method is its high threshold voltage obtained by a lower sintering temperature than the solid-state reaction method. The present work also shows that five phases including solid-state sintering, rich Bi liquid phase formation and ZnO as well as other additive dissolution, ZnO grain growth, the secondary phase sufficient formation and evolution have been experienced at different sintering temperatures. The hole type defect and nonhomogeneity of the microstructure will lead to the decrease of threshold voltage, i.e., the grain size and the homogeneity of the material will be important factors and directly affect the characteristic of the varistor. The sintering characteristic and the influence of Bi2O3 content on the threshold voltage are also discussed. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic properties of spin-valve pinned by FeMn layer were investigated after it was annealed at different temperatures. Its property was dependent on the vacuum annealing temperature. The pinning field could be increased through annealing at a temporature lower than 200degreesC;the pinning field would reduce and other properties be deteriorated as the annealing temperature was higher than 200degreesC; the pinning effect lost and giantmagnetic resistance disappeared at 300degreesC. Based on the results of AES analysis it was concluded that the diffusion in spin-valve multilayer was along grain boundary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon films co-doped with oxygen (O), boron (B) and phosphorus (P) were fabricated using PECVD technique. The erbium (Er) implanted samples were annealed in a N-2 ambient by rapid thermal annealing. Strong photoluminescence (PL) spectra of these samples were observed at room temperature. The incorporation of O, B and P could not only enhance the PL intensity but also the thermal annealing temperature of the strongest PL intensity. It seems that the incorporation of B or P can decrease the grain boundary potential barriers thus leading to an easier movement of carriers and a stronger PL intensity. Temperature dependence of PL indicated the thermal quenching of Er-doped hydrogenated amorphous silicon is very weak.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcrystalline silicon films were deposited by very high frequency (VHF) plasma-enhanced chemical vapor deposition (PECVD) with different hydrogen dilution. The microstructure of these films was investigated using Raman spectroscopy and infrared absorption (IR) spectra. The crystalline, amorphous, and grain boundary volume fractions X-c, X-a and X-gb were estimated from Raman measurements. An interface structure factor (R-if) is proposed to characterize the grain boundary volume fractions in IR spectroscopy. The density of states (DOS) of the microcrystalline crystalline silicon films were studied by phase-shift analysis of modulated photocurrent (MPC) and photoconductivity spectroscopy. It was observed that DOS increases with increasing grain boundary volume fractions, while the values of electron mobility-lifetime product mu T-e(e) disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the void swelling behavior of a 9Cr ferritic/martensitic steel irradiated with energetic Ne-ions is studied. Specimens of Grade 92 steel (a 9%Cr ferritic/martensitic steel) were subjected to an irradiation of Ne-20-ions (with 122 MeV) to successively increasing damage levels of 1, 5 and 10 dpa at a damage peak at 440 and 570 degrees C, respectively. And another specimen was irradiated at a temperature ramp condition (high flux condition) with the temperature increasing from 440 up to 630 degrees C during the irradiation. Cross-sectional microstructures were investigated with a transmission electron microscopy (TEM). A high concentration of cavities was observed in the peak damage region in the Grade 92 steel irradiated to 5 dpa, and higher doses. The concentration and mean size of the cavities showed a strong dependence on the dose and irradiation temperature. Enhanced growth of the cavities at the grain boundaries, especially at the grain boundary junctions, was observed. The void swelling behavior in similar 9Cr steels irradiated at different conditions are discussed by using a classic void formation theory. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.