478 resultados para CONJECTURE
Resumo:
Advances in our understanding of the large-scale electric and magnetic fields in the coupled magnetosphere-ionosphere system are reviewed. The literature appearing in the period January 1991–June 1993 is sorted into 8 general areas of study. The phenomenon of substorms receives the most attention in this literature, with the location of onset being the single most discussed issue. However, if the magnetic topology in substorm phases was widely debated, less attention was paid to the relationship of convection to the substorm cycle. A significantly new consensus view of substorm expansion and recovery phases emerged, which was termed the ‘Kiruna Conjecture’ after the conference at which it gained widespread acceptance. The second largest area of interest was dayside transient events, both near the magnetopause and the ionosphere. It became apparent that these phenomena include at least two classes of events, probably due to transient reconnection bursts and sudden solar wind dynamic pressure changes. The contribution of both types of event to convection is controversial. The realisation that induction effects decouple electric fields in the magnetosphere and ionosphere, on time scales shorter than several substorm cycles, calls for broadening of the range of measurement techniques in both the ionosphere and at the magnetopause. Several new techniques were introduced including ionospheric observations which yield reconnection rate as a function of time. The magnetospheric and ionospheric behaviour due to various quasi-steady interplanetary conditions was studied using magnetic cloud events. For northward IMF conditions, reverse convection in the polar cap was found to be predominantly a summer hemisphere phenomenon and even for extremely rare prolonged southward IMF conditions, the magnetosphere was observed to oscillate through various substorm cycles rather than forming a steady-state convection bay.
Resumo:
We discuss substorm observations made near 2100 magnetic local time (MLT) on March 7, 1991, in a collaborative study involving data from the European Incoherent Scatter radar, all-sky camera data, and magnetometer data from the Tromsø Auroral Observatory, the U.K. Sub-Auroral Magnetometer Network (SAMNET) and the IMAGE magnetometer chain. We conclude that for the substorm studied a plasmoid was not pinched off until at least 10 min after onset at the local time of the observations (2100 MLT) and that the main substorm electrojet expanded westward over this local time 14 min after onset. In the late growth phase/early expansion phase, we observed southward drifting arcs probably moving faster than the background plasma. Similar southward moving arcs in the recovery phase moved at a speed which does not appear to be significantly different from the measured plasma flow speed. We discuss these data in terms of the “Kiruna conjecture” and classical “near-Earth neutral line” paradigms, since the data show features of both models of substorm development. We suggest that longitudinal variation in behavior may reconcile the differences between the two models in the case of this substorm.
Resumo:
Intuition is an important and under-researched concept in information systems. Prior exploratory research has shown that that there is potential to characterize the use of intuition in academic information systems research. This paper extends this research to all of the available issues of two leading IS journals with the aim of reaching an approximation of theoretical saturation. Specifically, the entire text of MISQ and ISR was reviewed for the years 1990 through 2009 using searchable PDF versions of these publications. All references to intuition were coded on a basis consistent with Grounded Theory, interpreted as a gestalt and represented as a mind-map. In the period 1990-2009, 681 incidents of the use of "intuition", and related terms were found in the articles reviewed, representing a greater range of codes than prior research. In addition, codes were assigned to all issues of MIS Quarterly from commencement of publication to the end of the 2012 publication year to support the conjecture that coding saturation has been approximated. The most prominent use of the term of "intuition" was coded as "Intuition as Authority" in which intuition was used to validate a statement, research objective or a finding; representing approximately 34 per cent of codes assigned. In research articles where mathematical analysis was presented, researchers not infrequently commented on the degree to which a mathematical formulation was "intuitive"; this was the second most common coding representing approximately 16 per cent of the codes. The possibly most impactful use of the term "intuition" was "Intuition as Outcome", representing approximately 7 per cent of all coding, which characterized research results as adding to the intuitive understanding of a research topic or phenomena.This research aims to contribute to a greater theoretical understanding of the use of intuition in academic IS research publications. It provides potential benefits to practitioners by providing insight into the use of intuition in IS management, for example, emphasizing the emerging importance of "intuitive technology". Research directions include the creation of reflective and/or formative constructs for intuition in information systems research and the expansion of this novel research method to additional IS academic publications and topics.
Resumo:
In this paper we employ a hypothetical discrete choice experiment (DCE) to examine how much consumers are willing to pay to use technology to customize their food shopping. We conjecture that customized information provision can aid in the composition of a healthier shop. Our results reveal that consumers are prepared to pay relatively more for individual specic information as opposed to generic nutritional information that is typically provided on food labels. In arriving at these results we have examined various model specications including those that make use of ex-post de-brieng questions on attribute nonattendance and attribute ranking information and those that consider the time taken to complete the survey. Our main results are robust to the various model specications we examine
Resumo:
BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.
Resumo:
For a Hamiltonian K ∈ C2(RN × n) and a map u:Ω ⊆ Rn − → RN, we consider the supremal functional (1) The “Euler−Lagrange” PDE associated to (1)is the quasilinear system (2) Here KP is the derivative and [ KP ] ⊥ is the projection on its nullspace. (1)and (2)are the fundamental objects of vector-valued Calculus of Variations in L∞ and first arose in recent work of the author [N. Katzourakis, J. Differ. Eqs. 253 (2012) 2123–2139; Commun. Partial Differ. Eqs. 39 (2014) 2091–2124]. Herein we apply our results to Geometric Analysis by choosing as K the dilation function which measures the deviation of u from being conformal. Our main result is that appropriately defined minimisers of (1)solve (2). Hence, PDE methods can be used to study optimised quasiconformal maps. Nonconvexity of K and appearance of interfaces where [ KP ] ⊥ is discontinuous cause extra difficulties. When n = N, this approach has previously been followed by Capogna−Raich ? and relates to Teichmüller’s theory. In particular, we disprove a conjecture appearing therein.
Resumo:
In this paper we study the problem of maximizing a quadratic form 〈Ax,x〉 subject to ‖x‖q=1, where A has matrix entries View the MathML source with i,j|k and q≥1. We investigate when the optimum is achieved at a ‘multiplicative’ point; i.e. where x1xmn=xmxn. This turns out to depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We prove some partial results and conjecture that for f multiplicative such that 0
Resumo:
The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Changes in patterns and magnitudes of integration may influence the ability of a species to respond to selection. Consequently, modularity has often been linked to the concept of evolvability, but their relationship has rarely been tested empirically. One possible explanation is the lack of analytical tools to compare patterns and magnitudes of integration among diverse groups that explicitly relate these aspects to the quantitative genetics framework. We apply such framework here using the multivariate response to selection equation to simulate the evolutionary behavior of several mammalian orders in terms of their flexibility, evolvability and constraints in the skull. We interpreted these simulation results in light of the integration patterns and magnitudes of the same mammalian groups, described in a companion paper. We found that larger magnitudes of integration were associated with a blur of the modules in the skull and to larger portions of the total variation explained by size variation, which in turn can exert a strong evolutionary constraint, thus decreasing the evolutionary flexibility. Conversely, lower overall magnitudes of integration were associated with distinct modules in the skull, to smaller fraction of the total variation associated with size and, consequently, to weaker constraints and more evolutionary flexibility. Flexibility and constraints are, therefore, two sides of the same coin and we found them to be quite variable among mammals. Neither the overall magnitude of morphological integration, the modularity itself, nor its consequences in terms of constraints and flexibility, were associated with absolute size of the organisms, but were strongly associated with the proportion of the total variation in skull morphology captured by size. Therefore, the history of the mammalian skull is marked by a trade-off between modularity and evolvability. Our data provide evidence that, despite the stasis in integration patterns, the plasticity in the magnitude of integration in the skull had important consequences in terms of evolutionary flexibility of the mammalian lineages.
Resumo:
In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).
Resumo:
We consider Anosov actions of R(k), k >= 2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of R(k) has dimension one. We prove that if the ambient manifold has dimension greater than k + 2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.
Resumo:
We compute the analytic torsion of a cone over a sphere of dimensions 1, 2, and 3, and we conjecture a general formula for the cone over an odd dimensional sphere. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In [3], Bratti and Takagi conjectured that a first order differential operator S=11 +...+ nn+ with 1,..., n, {x1,..., xn} does not generate a cyclic maximal left (or right) ideal of the ring of differential operators. This is contrary to the case of the Weyl algebra, i.e., the ring of differential operators over the polynomial ring [x1,..., xn]. In this case, we know that such cyclic maximal ideals do exist. In this article, we prove several special cases of the conjecture of Bratti and Takagi.
Resumo:
Let Y = (f, g, h): R(3) -> R(3) be a C(2) map and let Spec(Y) denote the set of eigenvalues of the derivative DY(p), when p varies in R(3). We begin proving that if, for some epsilon > 0, Spec(Y) boolean AND (-epsilon, epsilon) = empty set, then the foliation F(k), with k is an element of {f, g, h}, made up by the level surfaces {k = constant}, consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek`s Jacobian Conjecture for polynomial maps of R(n).
Resumo:
Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen: (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes. (C) 2011 Elsevier B.V. All rights reserved.