744 resultados para Aspergillus ochraceus
Resumo:
Aspergillus phoenicis biofilms on polyethylene as inert support were used to produce fructooligosaccharides (FOS) in media containing 25% (m/V) of sucrose as a carbon source. The maximum production of total FOS (122 mg/mL), with 68% of 1-kestose and 32% of nystose, was obtained in Khanna medium maintained at 30 degrees C for 48 h under orbital agitation (100 rpm). At high concentrations of sucrose (30%, m/V), the recovery of FOS was higher than that observed at a low concentration (5%, m/V). High levels of FOS (242 mg/mL) were also recovered when using the biofilm in sodium acetate buffer with high sucrose concentration (50%, m/V) for 10 h. When the dried biofilm was reused in a fresh culture medium, there was a recovery of approx. 13.7% of total FOS after 72 h of cultivation at 30 C, and 10% corresponded to 1-kestose. The biofilm morphology, analyzed by scanning electron microscope, revealed a noncompact mycelium structure, with unfilled spaces and channels present among the hyphae. The results obtained in this study show that A. phoenicis biofilms may find application for FOS production in a single-step fermentation process, which is cost-effective in terms of reusability, downstream processing and efficiency.
Resumo:
Aflatoxins can cause great economic losses and serious risks to humans and animals health. The largest aflatoxin producers belong to Aspergillus section Flavi and can occur naturally in food commodities. Studies showed that molecular tools as well as the type of sclerotia produced by the strains could be helpful for identification of Aspergillus species and could be correlated with levels of toxin production. The purpose of this work was to characterize the genetic diversity using AFLP technique, the type of sclerotia and the ability of aflatoxin production by isolated strains from corn of different origins in Brazil, and to verify whether qPCR based on aflR and aflP genes is appropriate for estimating the level of aflatoxin production. All the 75 strains were classified as A. flavus and the AFLP technique showed a wide intraspecific variability within them. Regarding sclerotia production, 34% were classified as S and 66% as L type. Among the aflatoxin-producers, 52.8% produced aflatoxin B-1, while 47.2% aflatoxins B-1 and B-2. Statistical analysis showed no correlation between sclerotia production and aflatoxigenicty, and no correlation between the phylogenetic clusters and aflatoxin production. Concerning the relative expression of aflR and aflP, Pearson's correlation test demonstrated low positive correlation between the expression of the aflR and aflP genes and the production of AFB(1) and AFB(2), but showed high positive correlation between aflR and aflP expression. In contrast to the other reference strains, A. oryzae ATCC 7282 showed no amplification of aflR and aflP. The results highlight the need for detection of reliable and reproducible markers with a high positive correlation with aflatoxin production.
Resumo:
BACKGROUND: Cellulose and hemicellulose are quantitatively the most important structural carbohydrates present in ruminant diets. Rumen micro-organisms produce enzymes that catalyse their hydrolysis, but the complex network formed by structural carbohydrates and lignin reduces their digestibility and restricts efficient utilisation of feeds by ruminants. This study aimed to produce two enzymatic extracts, apply them in ruminant diets to determine the best levels for ruminal digestibility and evaluate their effects on in vitro digestibility. RESULTS: In experiment 1 a two-stage in vitro technique was used to examine the effects of different enzymatic levels of Aspergillus japonicus and Aspergillus terricola on tropical forages. Enzyme addition had minor effects on corn silage at the highest enzymatic level. In experiment 2 an in vitro gas production (GP) technique was applied to determine apparent in vitro organic matter digestibility and metabolisable energy. The addition of enzymes in GP showed interesting results. Good data were obtained using sugar cane and Tifton-85 hay supplemented with extracts of A. japonicus and A. terricola respectively. CONCLUSION: Overall, the study suggests that addition of crude extracts containing exogenous fibrolytic enzymes to ruminant diets enhances the effective utilisation of ruminant feedstuffs such as forages. Copyright (c) 2012 Society of Chemical Industry
Resumo:
An endo-1,5-arabinanase (abnA) encoding gene from Aspergillus niveus was identified, cloned and successfully expressed in Aspergillus nidulans strain A773. Based on amino acid sequence comparison, the 34-kDa enzyme could be assigned to CAZy GH family 43. Characterization of purified recombinant endo-1,5-arabinanase (AbnA) revealed that it is active at a wide pH range (pH 4.0-7.0) and an optimum temperature at 70 degrees C. The immobilization of the AbnA was performed via covalent binding onto agarose-modified supports: glyoxyl iminodiacetic acid-Ni2+, glyoxyl amine, glyoxyl (4% and 10%) and cyanogen bromide activated sepharose. The yield of immobilization was similar on glyoxyl amine and glyoxyl (96%), and higher than glyoxyl iminodiacetic acid-Ni2+ (43%) support. The thermal inactivation of these immobilized preparations showed that the stability of the AbnA immobilized on glyoxyl 4 and 10% was improved by 4.0 and 10.3-fold factor at 70 degrees C. The half-life of glyoxyl 4% derivative at 60 degrees C was >48 h (pH 5), 9 h (pH 7) and 88 min (pH 9). The major hydrolysis product of debranched arabinan or arabinopentaose by glyoxyl agarose-immobilized AbnA was arabinobiose. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The filamentous fungus Aspergillus nidulans has been used as a fungal model system to study the regulation of xylanase production. These genes are activated at transcriptional level by the master regulator the transcriptional factor XInR and repressed by carbon catabolite repression (CCR) mediated by the wide-domain repressor CreA. Here, we screened a collection of 42 A. nidulans F-box deletion mutants grown either in xylose or xylan as the single carbon source in the presence of the glucose analog 2-deoxy-D-glucose, aiming to identify mutants that have deregulated xylanase induction. We were able to recognize a null mutant in a gene (fbxA) that has decreased xylanase activity and reduced xInA and xInD mRNA accumulation. The Delta fbxA mutant interacts genetically with creAd-30, creB15, and creC27 mutants. FbxA is a novel protein containing a functional F-box domain that binds to Skp1 from the SCF-type ligase. Blastp analysis suggested that FbxA is a protein exclusive from fungi, without any apparent homologs in higher eukaryotes. Our work emphasizes the importance of the ubiquitination in the A. nidulans xylanase induction and CCR. The identification of FbxA provides another layer of complexity to xylanase induction and CCR phenomena in filamentous fungi. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Endophytic microorganisms live inside tissues of host plants apparently do not causing warning to them, and area promising source of bioactive molecules as antimicrobial and antitumoral drugs. In this work, we report the isolation of eugenitin from cultures of the endophyte Mycoleptodiscus indicus and its potential as additive for Aspergillus niveus glucoamylase activation. The glucoamylase hydrolytic activity increased twofold using 5 mM of eugenitin and this activation could be explained by the binding mode of eugenitin with the three-dimensional structure of glucoamylase. The in silica prediction of ligand binding sites revealed at least 9 possible interaction sites able to accommodate eugenitin on glucoamylase from Hypocrea jecorina. Besides, we evaluated the effect of pH and temperature on activity and stability, as well as in the hydrolysis of different substrates and kinetic parameters either in presence or absence of eugenitin. The results displayed by eugenitin as additive to glucoamylase activation are promising and provide novel perspectives for applications of fungal metabolites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ?aoxA, ?cycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation.
Resumo:
The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.
Resumo:
Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5'-CACAGCCAC-3' and 5'-CCCTGCCCC-3' sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -beta and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The Delta pmcA and Delta pmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the Delta calA and Delta crzA mutant strains. However, only the A. fumigatus Delta pmcA was avirulent in the murine model of invasive pulmonary aspergillosis.
Resumo:
Aspergillus flavus is the second most common cause of aspergillosis infection in immunocompromised patients and is responsible for the production of aflatoxins. Little is known about the population structure of A. flavus, although recent molecular and phenotypic data seem to demonstrate that different genetic lineages exist within this species. The aim of this study was to carry out a morphological, physiological, and molecular analysis of a set of clinical and environmental isolates to determine whether this variability is due to species divergence or intraspecific diversity, and to assess whether the clinical isolates form a separate group. The amdS and omtA genes were more phylogenetically informative than the other tested genes and their combined analysis inferred three main clades, with no clear distinction between clinical and environmental isolates. No important morphological and physiological differences were found between the members of the different clades, with the exception of the assimilation of D-glucosamine, which differentiates the members of the clade II from the others. (C) 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The Delta sebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA:GFP (SebA:green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the Delta sebA mutant. The A. fumigatus Delta sebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the Delta sebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.
Resumo:
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-beta-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 degrees C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan beta-1,3 or beta-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in beta-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 degrees C and 81.3 degrees C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 degrees C. the enzymatic assays demonstrated that XegA is more active in its monomeric state. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Brazil nuts are an important export market in its main producing countries, including Brazil, Bolivia, and Peru. Approximately 30,000 tons of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs with subsequent production of aflatoxins. In our study, Aspergillus section Flavi were isolated from Brazil nuts (Bertholletia excelsa), and identified by morphological and molecular means. We obtained 241 isolates from nut samples, 41% positive for aflatoxin production. Eighty-one isolates were selected for molecular investigation. Pairwise genetic distances among isolates and phylogenetic relationships were assessed. The following Aspergillus species were identified: A. flavus, A. caelatus, A. nomius, A. tamarii, A. bombycis, and A. arachidicola. Additionally, molecular profiles indicated a high level of nucleotide variation within beta-tubulin and calmodulin gene sequences associated with high genetic divergence from RAPD data. Among the 81 isolates analyzed by molecular means, three of them were phylogenetically distinct from all other isolates representing the six species of section Flavi. A putative novel species was identified based on molecular profiles.
Resumo:
This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of incubation, and A. flavus had a half-life of more than 75 minutes. At 55°C, the xylanase produced by A. niger showed more stable than from A. flavus showing a half-life of more than 45 minutes. The xylanase activity of A. niger and A. flavus were somehow protected in the presence of glycerol 5% when compared to the control (without additives). On the biobleaching assay it was observed that the xylanase from A. flavus was more effective in comparison to A. niger. The kappa efficiency corresponded to 36.32 and 25.93, respectively. That is important to emphasize that the cellulase activity was either analyzed and significant levels were not detected, which explain why the viscosity was not significantly modified.
Resumo:
Abstract Background Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. Results Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA: GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA:GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. Conclusions Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.