937 resultados para Agrupamento de dados. Fuzzy C-Means. Inicialização dos centros de grupos. Índices de validação


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Entender o comportamento e suas pequenas variações decorrentes das mudanças do ambiente térmico e desenvolver modelos que simulem o bem-estar a partir de respostas das aves ao ambiente constituem o primeiro passo para a criação de um sistema de monitoramento digital de aves em galpões de produção. Neste trabalho, foi desenvolvido um sistema de suporte à decisão com base na teoria dos conjuntos fuzzy para a estimativa do bem-estar de matrizes pesadas em função de frequências e duração dos comportamentos expressos pelas aves. O desenvolvimento do sistema passou por cinco etapas distintas: 1) organização dos dados experimentais; 2) apresentação dos vídeos em entrevista com "especialista"; 3) criação das funções de pertinência com base nas entrevistas e na revisão da literatura; 4) simulação de frequências de ocorrências e tempos médios de expressão dos comportamentos classificados como indicadores de bem-estar utilizando equações de regressão obtidas na literatura, e 5) construção das regras, simulação e validação do sistema. O sistema fuzzy desenvolvido estimou satisfatoriamente o bem-estar de matrizes pesadas, tendo na sua última versão, com maior número de regras, acertado 77,8% dos dados experimentais, comparados com as respostas esperadas por um especialista. O sistema pode ser utilizado como instrumento matemático-computacional para apoiar decisões em galpões de produção de matrizes pesadas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diante do alto grau de mecanização a que as atividades agrícolas estão sendo submetidas, objetivou-se, com esta pesquisa, desenvolver um modelo fuzzy capaz de avaliar e classificar o nível de insalubridade em diversos ambientes de trabalho. O modelo desenvolvido tem como variáveis de entrada: o índice de bulbo úmido e temperatura de globo (IBUTG, °C), o nível de ruído (dBA), a taxa de metabolismo (W m-2) e o tempo de descanso (%) e, como variável de saída, o índice de bem-estar humano (IBEH). O método de inferência utilizado foi o de Mandani e, na defuzificacão, utilizou-se o método do centro de gravidade. O sistema de regras foi desenvolvido com base nas combinações das variáveis de entrada. Foram definidas 400 regras com pesos iguais a 1, sendo que, na elaboração das regras, um especialista da área foi consultado. Foram utilizados dados de campo visando a testar o sistema desenvolvido, e os resultados mostraram que a modelagem proposta é uma ferramenta promissora na determinação do IBEH, apresentando tempo de descanso ideal variando de 64,2% (motosserra, próximo ao ouvido do operador) até 25% (derriçadora, 20 m de distância do operador), sendo que, diante de um cenário predefinido do ambiente térmico e acústico, foi possível determinar o grau de bem-estar humano e o tempo de descanso ideal para cada equipamento avaliado.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Um sistema de inferência fuzzy foi desenvolvido baseado em dados da literatura para predição do consumo de ração, ganho de peso e conversão alimentar de frangos de corte com idade variando de 1 a 21, dias submetidos a diferentes condições térmicas. O sistema fuzzy foi estruturado com base em três variáveis de entrada: idade das aves (semanas), temperatura (°C) e umidade relativa (%) ambientes, sendo que as variáveis de saída consideradas foram: ganho de peso, consumo de ração e conversão alimentar. A inferência foi realizada por meio do método de Mamdani, que consistiu na elaboração de 45 regras e a defuzzificação por meio do método do Centro de Gravidade. Com base nos resultados, ao se compararem os dados da literatura com os obtidos pelo sistema fuzzy proposto, verificou-se desempenho satisfatório na predição das variáveis respostas, com R² da ordem de 0,995; 0,998 e 0,976, respectivamente. O ganho de peso predito pela lógica fuzzy foi validado com dados experimentais de campo, no qual se obteve R² = 0,975, apresentando grande potencial de uso em sistemas de climatização automatizado.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O presente trabalho realizou uma análise de agrupamentos espacial por meio da estatística multivariada, no intuito de investigar a relação entre a produtividade da soja e as seguintes variáveis agrometeorológicas: precipitação pluvial, temperatura média do ar, radiação solar global e índice local de Moran (LISA) da produtividade. O estudo foi realizado com os dados das safras dos anos agrícolas de 2000/2001 a 2007/2008 da região oeste do Estado do Paraná. A identificação do número adequado de clusters para cada ano-safra foi obtida utilizando a minimização de desvios. O estudo mostrou a formação de grupos de municípios utilizando as similaridades das variáveis em análise. A análise de agrupamento foi um instrumento útil para melhor gestão das atividades de produção da agricultura, em função de que, com o agrupamento, foi possível estabelecer similaridades que proporcionem parâmetros para melhor gestão dos processos de produção que traga, quantitativa e qualitativamente, resultados almejados pelo agricultor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resumen tomado parcialmente de la propia publicaci??n

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, the DFA introduced by Peng, was established as an important tool capable of detecting long-range autocorrelation in time series with non-stationary. This technique has been successfully applied to various areas such as: Econophysics, Biophysics, Medicine, Physics and Climatology. In this study, we used the DFA technique to obtain the Hurst exponent (H) of the profile of electric density profile (RHOB) of 53 wells resulting from the Field School of Namorados. In this work we want to know if we can or not use H to spatially characterize the spatial data field. Two cases arise: In the first a set of H reflects the local geology, with wells that are geographically closer showing similar H, and then one can use H in geostatistical procedures. In the second case each well has its proper H and the information of the well are uncorrelated, the profiles show only random fluctuations in H that do not show any spatial structure. Cluster analysis is a method widely used in carrying out statistical analysis. In this work we use the non-hierarchy method of k-means. In order to verify whether a set of data generated by the k-means method shows spatial patterns, we create the parameter Ω (index of neighborhood). High Ω shows more aggregated data, low Ω indicates dispersed or data without spatial correlation. With help of this index and the method of Monte Carlo. Using Ω index we verify that random cluster data shows a distribution of Ω that is lower than actual cluster Ω. Thus we conclude that the data of H obtained in 53 wells are grouped and can be used to characterize space patterns. The analysis of curves level confirmed the results of the k-means

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-organizing maps (SOM) are artificial neural networks widely used in the data mining field, mainly because they constitute a dimensionality reduction technique given the fixed grid of neurons associated with the network. In order to properly the partition and visualize the SOM network, the various methods available in the literature must be applied in a post-processing stage, that consists of inferring, through its neurons, relevant characteristics of the data set. In general, such processing applied to the network neurons, instead of the entire database, reduces the computational costs due to vector quantization. This work proposes a post-processing of the SOM neurons in the input and output spaces, combining visualization techniques with algorithms based on gravitational forces and the search for the shortest path with the greatest reward. Such methods take into account the connection strength between neighbouring neurons and characteristics of pattern density and distances among neurons, both associated with the position that the neurons occupy in the data space after training the network. Thus, the goal consists of defining more clearly the arrangement of the clusters present in the data. Experiments were carried out so as to evaluate the proposed methods using various artificially generated data sets, as well as real world data sets. The results obtained were compared with those from a number of well-known methods existent in the literature

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Examinou-se a mortalidade por neoplasias no Brasil, utilizando-se dados oficiais do Ministério da Saúde, abrangendo 26 Unidades da Federação e 13 diferentes localizações neoplásicas, para os anos de 1980, 1983 e 1985. As Análises de Agrupamento e de Componentes Principais revelaram comportamento heterogêneo entre regiões do país, com relação às 13 variáveis estudadas, sendo que os principais elementos discriminantes foram as neoplasias malignas da traquéia/brônquio/pulmão, seguidas das do estômago, esôfago, cólon e pâncreas. Análises complementares evidenciaram tendência de crescimento das taxas de mortalidade para as neoplasias malignas da próstata (17,74%), da traquéia/brônquio/pulmão(15,22%), da mama (11,32%), do pâncreas (10,23%), do cólon (8,08%), do colo uterino (6,45%) e da laringe (6,36%). Houve redução da mortalidade por neoplasias benignas/carcinoma in situ/ outras (27,37%), por neoplasias malignas no reto sigmóide/ânus (7,67%), do estômago (5,31%), de outro local do útero não especificado (2,56%), por leucemia (0,70%) e por neoplasias malignas do esôfago (0,44%). As neoplasias malignas do estômago foram a principal causa de morte por câncer no Brasil, representando 21,30% do total médio, seguidas das neoplasias malignas da traquéia/brônquio/pulmão(17,49% do total médio). Destacam-se os altos índices de mortalidade por neoplasias malignas do esôfago no Estado do Rio Grande do Sul.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O trabalho teve objetivo estudar a variabilidade temporal da temperatura do ar, precipitação pluviométrica e umidade relativa do ar na cidade de Botucatu-SP, Brasil, utilizando técnicas geoestatísticas. Os dados de precipitação pluviométrica, temperatura do ar e umidade relativa do ar utilizados no presente estudo são provenientes da Estação Meteorológica da Fazenda Lageado, da Faculdade de Ciências Agronômicas-UNESP. As observações foram realizadas no período de 1988 a 2007, referem-se ao total mensal de precipitação pluvial expressa em altura de lâmina d'água (mm), médias mensais de temperatura em ºC e umidade relativa em %. Os dados foram avaliados por meio da estatística clássica e geoestatística. As variáveis climáticas tiveram sua dependência verificada por variogramas, apresentando dependência temporal maior que 76%. A série temporal de umidade relativa do ar foi a que apresentou maior alcance (8,67 meses) e, conseqüentemente, maior estabilidade climática. O conhecimento da distribuição temporal das variáveis climáticas é importante para o estudo e realização do zoneamento agroclimático, bem como para o dimensionamento do sistema de irrigação das culturas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA