Evolutionary fuzzy clustering of relational data


Autoria(s): HORTA, Danilo; ANDRADE, Ivan C. de; CAMPELLO, Ricardo J. G. B.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP

Identificador

THEORETICAL COMPUTER SCIENCE, v.412, n.42, p.5854-5870, 2011

0304-3975

http://producao.usp.br/handle/BDPI/28750

10.1016/j.tcs.2011.05.039

http://dx.doi.org/10.1016/j.tcs.2011.05.039

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Theoretical Computer Science

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Natural computing #Fuzzy computing #Evolutionary algorithms #Fuzzy clustering #Relational data #GENE-EXPRESSION DATA #K-MEANS #VALIDITY #CLASSIFICATION #ALGORITHMS #EFFICIENCY #CRITERION #MODEL #SET #AID #Computer Science, Theory & Methods
Tipo

article

original article

publishedVersion