947 resultados para tungsten carbide
Resumo:
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Arsenic (As) and chromium (Cr) are two of the most toxic pollutants introduced into natural waters from a variety of sources, and they cause various adverse effects on living bodies when their concentrations exceed permissible limits. Laboratory experiments have been conducted to investigate the sorption of As and Cr on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of As and Cr species for iron/iron carbide (Fe/Fe3C) sites is the key factor in controlling the removal of the elements. The method is based on the use of powder carbon steel, powdered block carbon, and ball ceramic in the ion-sorption columns as a cleaning process. The presence of carbon steel in a system that contains As3+ and Cr6+ might have a potential effect.
Resumo:
This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe / Fe3C (iron / iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system.
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
Over the last decades, anti-resonant reflecting optical waveguides (ARROW) have been used in different integrated optics applications. In this type of waveguide, light confinement is partially achieved through an anti-resonant reflection. In this work, the simulation, fabrication and characterization of ARROW waveguides using dielectric films deposited by a plasma-enhanced chemical vapor deposition (PECVD) technique, at low temperatures(similar to 300 degrees C), are presented. Silicon oxynitride (SiO(x)N(y)) films were used as core and second cladding layers and amorphous hydrogenated silicon carbide(a-SiC:H) films as first cladding layer. Furthermore, numerical simulations were performed using homemade routines based on two computational methods: the transfer matrix method (TMM) for the determination of the optimum thickness of the Fabry-Perot layers; and the non-uniform finite difference method (NU-FDM) for 2D design and determination of the maximum width that yields single-mode operation. The utilization of a silicon carbide anti-resonant layer resulted in low optical attenuations, which is due to the high refractive index difference between the core and this layer. Finally, for comparison purposes, optical waveguides using titanium oxide (TiO(2)) as the first ARROW layer were also fabricated and characterized.
Resumo:
Silicon carbide thin films (Si(x)C(y)) were deposited in a RF (13.56 MHz) magnetron sputtering system using a sintered SiC target (99.5% purity). In situ doping was achieved by introducing nitrogen into the electric discharge during the growth process of the films. The N(2)/Ar flow ratio was adjusted by varying the N(2) flow rate and maintaining constant the Ar flow rate. The structure, composition and bonds formed in the nitrogen-doped Si (x) C (y) thin films were investigated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR) techniques. RBS results indicate that the carbon content in the film decreases as the N(2)/Ar flow ratio increases. Raman spectra clearly reveal that the deposited nitrogen-doped SiC films are amorphous and exhibited C-C bonds corresponding to D and G bands. After thermal annealing, the films present structural modifications that were identified by XRD, Raman and FTIR analyses.
Resumo:
The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a theoretical and experimental investigation into the oxidation reactions of Si3N4-bonded SiC ceramics. Such ceramics which contain a small amount of silicon offer increased oxidation and wear resistance and are widely used as lining refractories in blast furnaces. The thermodynamics of oxidation reactions were studied using the JANAF tables. The weight gain was measured using a thermogravimetric analysis technique to study the kinetics. The temperature range of oxidation measurements is from 1073 to 1573 K and the oxidation atmosphere is water vapour, pure CO and CO-CO2 gas mixtures with various CO-to-CO2 ratios. Thermodynamic simulations showed that the oxidation mechanism of Si3N4-bonded SiC ceramics is passive oxidation and all components contribute to the formation of a silica film. The activated energies of the reactions follow the sequence Si3N4>SiC>Si. The kinetic study revealed that the oxidation of Si3N4-bonded SiC ceramics occurred in a mixed regime controlled by both interface reaction and diffusion through the silica film. Under the atmosphere conditions prevailing in the blast furnace, this ceramic is predicted to be passively oxidized with the chemical reaction rate becoming more dominant as the CO concentration increases. (C) 1998 Chapman & Hall.
Resumo:
First of all, we would like to clarify that the passive to active transition was determined not by using Solgasmix [1], but by combining thermodynamic equilibrium and mass balance for the oxidation of SiC under pure CO2 and pure CO. The model used in our paper [2]was an extension ofWagner’s model [3], in a similar way as Balat et al. [4] did for the oxidation of SiC in oxygen.
Resumo:
Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining was carried out to investigate microfracture, residual damage, and surface roughness associated with material removal and surface generation. Brittle versus plastic deformation was studied using Vickers indention and nano-indentation. To characterize the abrasive machining response, the 6H-SiC (0001) substrates were ground using diamond wheels with grit sizes of 25, 15 and 7 mum, and then polished with diamond suspensions of 3 and 0.05 mum. It is found that in indentation, there was a scale effect for brittle versus plastic deformation in 6H-SiC substrates. Also, in grinding, the scales of fracture and surface roughness of the substrates decreased with a decrease in diamond grit size. However, in polishing, a reduction in grit size of diamond suspensions gave no significant improvement in surface roughness. Furthermore, the results showed that fracture-free 6H-SiC (0001) surfaces were generated in polishing with the existence of the residual crystal defects, which were associated with the origin of defects in single crystal growth. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
WO(3)/chitosan and WO(3)/chitosan/poly(ethylene oxide) (PEO) films were prepared by the layer-by-layer method. The presence of chitosan enabled PEO to be carried into the self-assembled structure, contributing to an increase in the Li(+) diffusion rate. On the basis of the galvanostatic intermittent titration technique (GITT) and the quadratic logistic equation (QLE), a spectroelectrochemical method was used for determination of the ""optical"" diffusion coefficient (D(op)), enabling analysis of the Li(+) diffusion rate and, consequently, the coloration front rate in these host matrices. The D(op) values within the WO(3)/chitosan/PEO film were significantly higher than those within the WO(3)/chitosan film, mainly for higher values of injected charge. The presence of PEO also ensured larger accessibility to the electroactive sites, in accordance with the method employed here. Hence, this spectroelectrochemical method allowed us to separate the contribution of the diffusion process from the number of accessible electroactive sites in the materials, thereby aiding a better understanding of the useful electrochemical and electrochromic properties of these films for use in electrochromic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Layer-by-layer (LbL) nanocomposite films from TiO(2) nanoparticles and tungsten-based oxides (WO(x)H(y)), as well as dip-coating films of TiO(2) nano particles, were prepared and investigated by electrochemical techniques under visible light beams, aiming to evaluate the lithium ion storage and chromogenic properties. Atomic force microscopy (AFM) images were obtained for morphological characterization of the Surface of the materials, which have similar roughness. Cyclic voltammetry and chronoamperometry measurements indicated high storage capacity of lithium ions in the LbL nanocomposite compared with the dip-coating film, which was attributed to the faster lithium ion diffusion rate within the self-assembled matrix. On the basis of the data obtained from galvanostatic intermittent titration technique (GITT), the values of lithium ion diffusion coefficient (D(Li)) for TiO(2)/WO(x)H(y) were larger compared with those for TiO(2). The rate of the coloration front in the matrices was investigated using a spectroelectrochemical method based oil GITT, allowing the determination of the ""optical"" diffusion coefficient (D(op)) as a function of the amount of lithium ions previously inserted into the matrices. The Values of D(Li) and D(op) suggested the existence of phases with distinct contribution to lithium ion diffusion rates and electrochromic efficiency. Moreover, these results aided a better understanding of the temporal change of current density and absorbance during the ionic electro-insertion, which is important for the possible application of these materials in lithium ion batteries and electrohromic devices.
Resumo:
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAR) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAR and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.
Resumo:
The synthesis of chromium carbides, Cr7C3 and Cr3C2, by mechanically allowing chromium and carbon powders has been investigated. Milling conditions were found to have a strong influence on the evolution of microstructure, with high collision energies being required to form carbide phases. Milling at intermediate energy levels resulted in the formation of an amorphous phase, and with low energy conditions only grain size refinement of Cr occurred with no evidence of any reaction between Cr and C. The amorphous phase was found to be the precursor to carbide formation. (C) 1997 Elsevier Science S.A.