921 resultados para spherical quantum dot
Resumo:
We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.
Resumo:
We propose a novel superluminescent diode (SLD) with a quantum dot (QD) active layer, which should give a wider output spectrum than a conventional quantum well SLD. The device makes use of inhomogeneous broadness of gain spectrum resulting from size inhomogeneity of self-assembled quantum dots grown by Stranski-Krastanow mode. Taking a design made out in the InxGa1-xAs/GaAs system for example, the spectrum characteristics of the device are simulated realistically, 100-200 nm full width of half maximum of output spectrum can be obtained. The dependence of the output spectrum on In composition, size distribution and injection current of the dots active region is also elaborated.
Resumo:
Electron transport through a double-quantum-dot structure with intradot and interdot Coulomb interactions is studied by a Green's function (GF) approach. The conductance is calculated by a Landauer-Buttiker formula for the interacting systems derived using the nonequilibrium Keldysh formalism and the GF's are solved by the equation-of-motion method. It is shown that the interdot-coupling dependence of the conductance peak splitting matches the recent experimental observations. Also, the breaking of the electron-hole symmetry is numerically demonstrated by the presence of the interdot repulsion. [S0163-1829(99)01640-9].
Resumo:
Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.
Resumo:
The ground state of a double quantum-dot structure is studied by a simplified Anderson-type model. Numerical calculations reveal that the ground-state level of this artificial molecule increases with the increasing single particle level of the dot, and also increases with the decreasing transfer integrals. We show the staircase feature of the electron occupation and the properties of the ground-state eigenvector by varying the;single particle level of the dot.
Resumo:
Morphology of self-assembled GeSi quantum dot grown on Si(113) by Si molecular beam epitaxy has been studied by transmission electron microscopy and atomic force microscopy. Photoluminescence from the as-grown sample and annealed sample was studied. The results were analyzed and explained.
Resumo:
Normal-incident infrared absorption in the 8-12-mu m-atmospheric spectral window in the InGaAs/GaAs quantum-dot superlattice is observed. Using cross-sectional transmission electron microscopy, we find that the InGaAs quantum dots are perfectly vertically aligned in the growth direction (100). Under the normal incident radiation, a distinct absorption peaked at 9.9 mu m is observed. This work indicates the potential of this quantum-dot superlattice structure for use as normal-incident infrared imaging focal arrays application without fabricating grating structures. (C) 1998 American Institute of Physics. [S0003-6951(98)01151-6].
Resumo:
30-period InGaAs/GaAs quantum dot superlattice was fabricated by MBE. Using cross sectional transmission electron microscopy, the InGaAs quantum dots were found to be perfectly vertically aligned in the growth direction (100). Under normally incident radiation, a distinct absorption in the 8.5 similar to 10.4 mu m range peaked at 9.9 mu m was observed. The normally incident infrared absorption in vertically aligned quantum dot superlattice in the 8 similar to 12 mu m range was realized for the first time. This result indicates the potential application of the quantum dot superlattice structure without grating as normally incident infrared detector focal plane arrays.
Resumo:
We report the device performance of normal-incidence (In, Ga)As/GaAs quantum dot intersubband infrared photodetectors. A primary intersubband transition peak is observed at the wavelength of 13 mu m (E-0 --> E-1) and a secondary peak at 11 mu m (E-0 --> E-2). The measured energy spacing in the conduction band of the quantum dots is in good agreement with low temperature photoluminescence measurement and calculations. A peak detectivity of 1 x 10(10) cm Hz(1/2)/W at 13 mu m was achieved at 40 K for these devices. (C) 1998 American Institute of Physics. [S0003-6951(98)01440-5].
Resumo:
InAs quantum dots inserted at the middle of a GaAs quantum well structure have been investigated by transmission electron microscopy and scanning transmission electron microscopy. We find that the growth condition of the overlayer on the InAs dots can lead to drastic changes in the structure of the dots. We attribute the changes to a combination of factors such as preferential growth of the overlayer above the wetting layers because of the strained surfaces and to the thermal instability of the InAs dots at elevated temperature. The result suggests that controlled sublimation, through suitable manipulation of the overlayer growth conditions, can be an effective tool to improve the structure of the self-organized quantum dots and can help tailor their physical properties to any specific requirements of the device applications. (C) 1998 American Institute of Physics.
Resumo:
Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.
Resumo:
We investigate the annealing behavior of InAs layers with different thicknesses in a GaAs matrix. The diffusion enhancement by strain, which is well established in strained quantum wells, occurs in InAs/GaAs quantum dots (QDs). A shift of the QD luminescence peak toward higher energies results from this enhanced diffusion. In the case of structures where a significant portion of the strain is relaxed by dislocations, the interdiffusion becomes negligible, and there is a propensity to generate additional dislocations. This results in a decrease of the QD luminescence intensity, and the QD peak energy is weakly affected.
Resumo:
A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The wetting layers (WL) in InAs/GaAs quantum-dot system have been studied by reflectance difference spectroscopy (RDS), in which two structures related to the heavy-hole (HH) and light-hole (LH) transitions in the WL have been observed. The evolution and segregation behaviors of WL during Stranski-Krastanow (SK) growth mode have been studied from the analysis of the WL-related optical transition energies. It has been found that the segregation coefficient of Indium atoms varies linearly with the InAs amount in WL. In addition, the effect of the growth temperature on the critical thickness for InAs island formation has also been studied. The critical thickness defined by the appearance of InAs dots, which is determined by AFM, shows a complex variation with the growth temperature. However, the critical thickness determined by RDS is almost constant in the range of 510-540 degrees C.
Resumo:
Performing an event-based continuous kinetic Monte Carlo (KMC) simulation, We investigate the growth conditions which are important to form semiconductor quantum dot (QD) in molecular beam epitaxy (MBE) system. The simulation results provide a detailed characterization of the atomic kinetic effects. The KMC simulation is also used to explore the effects of periodic strain to the epitaxy growth of QD. The simulation results are in well qualitative agreement with experiments.