993 resultados para photoluminescence spectra


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence (PL) of ZnO is shown to be dependent on the excitation intensity (EI) of the laser, and the substantial shift observed in the band to band transition is attributed to the heating effect. In order to understand this phenomenon in detail, we investigate the EI dependent PL of various ZnO samples systematically from liquid nitrogen (LN) to room temperature by varying the laser power. Some of the samples exhibit substantial red shift in the band to band transition with increasing EI even in LN environment, negligible effect is observed for others. Hence, our results strongly suggest that the EI dependent PL is not a characteristic of all ZnO samples. This indicates that laser-induced heating effect is not the dominant factor that governs the shifts in the PL spectra. Rather, the defect level excitation accounts for such observation. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of scheelite-type Eu3+-activated CaMoO4 phosphors were synthesized by the nitrate-citrate gel combustion method. All the compounds crystallized in the tetragonal structure with space group I4(1)/a (No. 88). FESEM results reveal the spherical-like morphology. The CaMoO4 phosphor exhibited broad emission centered at 500 nm under the excitation of 298 nm wavelength, while Eu3+-activated CaMoO4 shows an intense characteristic red emission peak at 615 nm at different excitation wavelengths, due to D-5(0) -> F-7(2) transition of Eu3+ ions. The intensities of transitions between different J levels depend on the symmetry of the local environment of Eu3+ ions and were estimated using the Judd-Ofelt analysis. The high asymmetric ratio revealed that Eu3+ occupies sites with a low symmetry and without an inversion center. The CIE chromaticity co-ordinates (x, y) were calculated from emission spectra, and the values were close to the NTSC standard. Therefore, the present phosphor is highly useful for LEDs applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors were synthesized by the precipitation method. All compounds crystallized in the tetragonal structure with space group 141/a (No. 88). Scherrer's and TEM results revealed that the average crystallite size varies from 32 to 55 nm. FE-SEM illustrate the spherical (CaWO4), bouquet (SrWO4), and fish (BaWO4) like morphologies. PL spectra indicate the broad emission peak maximum at 436 (CaWO4), 440 (SrWO4), and 433 nm (BaWO4) under UV excitation. The calculated CIE color coordinates of MWO4 nanophosphors are close to the commercial BAM and National Television System Committee blue phosphor. The photocatalytic activities of MWO4 were investigated for the degradation of methylene blue dye under UV illumination. At pH 3, BaWO4 nanocatalyst showed 100% dye degradation within 60 min. The photocatalytic activity was in the decreasing order of BaWO4> CaWO4>SrWO4 under both neutral and acidic conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the D-5(0) -> F-7(2) transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Omega(t) (t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of Eu3+ activated Ce0.5Al0.5O2-delta nanophosphors have been synthesized by the nitrate - citrate gel combustion method. All the compounds crystallized in the cubic fluorite CeO2 structure with space group Fm-3m (No. 225). FESEM revealed the flakes-like morphology. The average particle size was estimated from TEM studies and found to be in the range 15-25 nm. The values were in good agreement with the Scherer's method. In photoluminescence (PL) spectra, the D-5(0) -> F-7(2) (612 nm) transition dominates than other transitions which indicates that the Eu3+ ions occupy a site without inversion center. CIE chromaticity diagram confirmed that these nanophosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO/ITO/ZnO sandwich structure films were fabricated. The effects of buffer layer on the structure and optical properties of ZnO films were investigated by x-ray diffraction (XRD), photoluminescence, optical transmittance, and absorption measurements. XRD spectra indicate that a buffer layer has the effects of lowering the grain orientation of ZnO films and increasing the residual stresses in the films. The near-band-edge emissions of ZnO films deposited on both single indium tin oxide (ITO) buffer and ITO/ZnO double buffers are significantly enhanced compared with that deposited on a bare substrate due to the quantum confinement effect. (C) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of oxygen partial pressure on the structure and photoluminescence (PL) of ZnO films were studied. The films were prepared by direct current (DC) reactive magnetron sputtering with various oxygen concentrations at room temperature. With increasing oxygen ratio, the structure of films changes from zinc and zinc oxide phases, single-phase ZnO, to the (002) orientation, and the mechanical stresses exhibit from tensile stress to compressive stress. Films deposited at higher oxygen pressure show weaker emission intensities, which may result from the decrease of the oxygen vacancies and zinc interstitials in the film. This indicates that the emission in ZnO film originates from the oxygen vacancy and zinc interstitial-related defects. From optical transmittance spectra of ZnO films, the plasma edge shifts towards the shorter wavelength with the improvement of film stoichiometry. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 laser irradiation experiments on ZnO thin films are reported. The structural, optical, luminescent and vibrational properties of the samples were investigated by X-ray diffraction (XRD), transmittance, photoluminescence (PL) and Raman measurements. XRD results show that the crystalline of the irradiated films was improved. The (002) peaks of irradiated ZnO films shift to. higher 20 angles due to the stress relaxation in the case of laser beam irradiation. From optical transmittance spectra, all films exhibit high transmittance in the visible range, the optical band edge of irradiated films showed a redshift compared with that of as-grown films. Compared with the as-grown films, the photoluminescence emission (in particular the relative intensities of visible emissions) intensities of irradiated samples enhanced. In the Raman scattering spectral both the A I. and E modes exhibited slight Raman blueshift. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

a-C:H films deposited from methane and helium mixture in a capacitively coupled rf plasma were found to show photoluminescence (PL) with peak intensities at energies far above the Taue gap of these films. Apart from the PL the films were investigated with respect to their IR and UV/VIS absorption properties as well as their Raman spectra were examined. The ultraviolet (UV) and blue luminescence from hard a-C:H thin films are explained by incorporation of polycyclic hydrocarbons from gas-phase reactions in the methane helium plasma into the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using photoluminescence (PL) and time-resolved PL spectra, the optical properties of single InAs quantum dot (QD) embedded in the p-1-n structure have been studied under an applied electric field With the increasing of electric field, the exciton lifetime increases due to the Stark effect. We noticed that the decrease or quenching of PL intensity with increasing the electric field is mainly due to the decrease of the carriers captured by QD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon nitride films were deposited by plasma-enhanced chemical-vapour deposition. The films were then implanted with erbium ions to a concentration of 8 x 10(20) cm(-3). After high temperature annealing, strong visible and infrared photoluminescence (PL) was observed. The visible PL consists mainly of two peaks located at 660 and 750 nm, which are considered to originate from silicon nanocluster (Si-NCs) and Si-NC/SiNx interface states. Raman spectra and HRTEM measurements have been performed to confirm the existence of Si-NCs. The implanted erbium ions are possibly activated by an energy transfer process, leading to a strong 1.54 mu m PL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.