844 resultados para building blocks of effective teams
Resumo:
The application of the Restricted Dynamics Approach in nuclear theory, based on the approximate solution of many-particle Schrödinger equation, which accounts for all conservation laws in many-nucleon system, is discussed. The Strictly Restricted Dynamics Model is used for the evaluation of binding energies, level schemes, E2 and Ml transition probabilities as well as the electric quadrupole and magnetic dipole momenta of light a-cluster type nuclei in the region 4 ≤ A ≤ 40. The parameters of effective nucleonnucleon interaction potential are evaluated from the ground state binding energies of doubly magic nuclei 4He, 16O and 40Ca.
Resumo:
Appreciation of objects` affordances and planning is a hallmark of human technology. Archeological evidence suggests that Pliocene hominins selected raw material for tool making [1, 2]. Stone pounding has been considered a precursor to tool making [3, 4], and tool use by living primates provides insight into the origins of material selection by human ancestors. No study has experimentally investigated selectivity of stone tools in wild animals, although chimpanzees appear to select stones according to properties of different nut species [5, 6]. We recently discovered that wild capuchins with terrestrial habits [7] use hammers to crack open nuts on anvils [8-10]. As for chimpanzees, examination of anvil sites suggests stone selectivity [11], but indirect evidence cannot prove it. Here, we demonstrate that capuchins, which last shared a common ancestor with humans 35 million years ago, faced with stones differing in functional features (friability and weight) choose, transport, and use the effective stone to crack nuts. Moreover, when weight cannot be judged by visual attributes, capuchins act to gain information to guide their selection. Thus, planning actions and intentional selection of tools is within the ken of monkeys and similar to the tool activities of hominins and apes.
Resumo:
Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]
Resumo:
The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.
Resumo:
The electronic interactions between the [Cu(opba)]2- anions (where opba is orthophenylenebis (oxamato)) and single-wall carbon nanotubes (SWCNTs) were investigated by resonance Raman spectroscopy. The opba can form molecular magnets, and the interactions of opba with SWCNTs can produce materials with very different magnetic/electronic properties. It is observed that the electronic interaction shows a dependence on the SWCNT diameter independent of whether they are metallic or semiconducting, although the interaction is stronger for metallic tubes. The interaction also is dependent on the amount of complex that is probably adsorbed on the carbon surface of the SWCNTs. Some charge transfer can be also occurring between the metallic complex and the SWCNTs. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
A previous study on the characterization of effective material properties of a d(15) thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d(15) MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.
Resumo:
A previous study on the characterization of effective material properties of a d15 thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k15 and piezoelectric stress constant e15 when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d15 MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.
Resumo:
[EN]This research investigates the ways of implementing dual-language programs and the schools’ internal procedures of evaluating them. Previous studies have examined the effectiveness of bilingual programs (Genovesee et al. 2005; Howard et al. 2005; Krashen 2004). However, there is little still known about schools’ procedures that systematize the organizational aspect of such programs. The Mixed Methods Research (MMR) approach was applied in this study to analyze data collected through questionnaires, interviews, and case studies.
Resumo:
In recent decades, Organic Thin Film Transistors (OTFTs) have attracted lots of interest due to their low cost, large area and flexible properties which have brought them to be considered the building blocks of the future organic electronics. Experimentally, devices based on the same organic material deposited in different ways, i.e. by varying the deposition rate of the molecules, show different electrical performance. As predicted theoretically, this is due to the speed and rate by which charge carriers can be transported by hopping in organic thin films, transport that depends on the molecular arrangement of the molecules. This strongly suggests a correlation between the morphology of the organic semiconductor and the performance of the OTFT and hence motivated us to carry out an in-situ real time SPM study of organic semiconductor growth as an almost unprecedent experiment with the aim to fully describe the morphological evolution of the ultra-thin film and find the relevant morphological parameters affecting the OTFT electrical response. For the case of 6T on silicon oxide, we have shown that the growth mechanism is 2D+3D, with a roughening transition at the third layer and a rapid roughening. Relevant morphological parameters have been extracted by the AFM images. We also developed an original mathematical model to estimate theoretically and more accurately than before, the capacitance of an EFM tip in front of a metallic substrate. Finally, we obtained Ultra High Vacuum (UHV) AFM images of 6T at lying molecules layer both on silicon oxide and on top of 6T islands. Moreover, we performed ex-situ AFM imaging on a bilayer film composed of pentacene (a p-type semiconductor) and C60 (an n-type semiconductor).
Resumo:
The most important property controlling the physicochemical behaviour of polyelectrolytes and their applicability in different fields is the charge density on the macromolecular chain. A polyelectrolyte molecule in solution may have an effective charge density which is smaller than the actual charge density determined from its chemical structure. In the present work an attempt has been made to quantitatively determine this effective charge density of a model polyelectrolyte by using light scattering techniques. Flexible linear polyelectrolytes with a Poly(2-Vinylpyridine) (2-PVP) backbone are used in the present study. The polyelectrolytes are synthesized by quaternizing the pyridine groups of 2-PVP by ethyl bromide to different quaternization degrees. The effect of the molar mass, degree of quaternization and solvent polarity on the effective charge is studied. The results show that the effective charge does not vary much with the polymer molar mass or the degree of quaternization. But a significant increase in the effective charge is observed when the solvent polarity is increased. The results do not obey the counterion condensation theory proposed by Manning. Based on the very low effective charges determined in this study, a new mechanism for the counterion condensation phenomena from a specific polyelectrolyte-counterion interaction is proposed
Resumo:
Biomass transformation into high-value chemicals has attracted attention according to the “green chemistry” principles. Low price and high availability make biomass one of the most interesting renewable resources as it provides the means to create sustainable alternatives to the oil-derived building blocks of the chemical industry In recent year, the need for alternative environmentally friendly routes to drive chemical reactions has in photocatalytic processes an interesting way to obtain valuable chemicals from various sources using the solar light as energy source. The purpose of this work was to use supported noble metal nanoparticles in the selective photo-oxidation of glucose through using visible light. Glucose was chosen as model molecule because it is the cheapest and the most common monosaccharide. Few studies about glucose photo oxidation have been conducted so far, and reaction mechanism is still not totally explained. The aim of this work was to systematically analyze and assess the impact of several parameters (eg. catalyst/substrate ratio, reaction time, effect of the solvent and light source) on the reaction pathway and to monitor the product distribution in order to draw a general reaction scheme for the photo oxidation of glucose under visible light. This study regards the reaction mechanism and the influence of several parameters, such as solvent, light power and substrate concentration. Furthermore, the work focuses on the influence of gold and silver nanoparticles and on the influence of metal loading. The glucose oxidation was monitored through the mass balance and the products selectivity. Reactions were evaluated in terms of glucose conversion, mass balance and selectivities towards arabinose and gluconic acid. In conclusion, this study is able to demonstrate that the photo oxidation of glucose under visible light is feasible; the full identification of the main products allows, for the first time, a comprehensive reaction mechanism scheme.
Resumo:
The excitation spectrum is one of the fundamental properties of every spatially extended system. The excitations of the building blocks of normal matter, i.e., protons and neutrons (nucleons), play an important role in our understanding of the low energy regime of the strong interaction. Due to the large coupling, perturbative solutions of quantum chromodynamics (QCD) are not appropriate to calculate long-range phenomena of hadrons. For many years, constituent quark models were used to understand the excitation spectra. Recently, calculations in lattice QCD make first connections between excited nucleons and the fundamental field quanta (quarks and gluons). Due to their short lifetime and large decay width, excited nucleons appear as resonances in scattering processes like pion nucleon scattering or meson photoproduction. In order to disentangle individual resonances with definite spin and parity in experimental data, partial wave analyses are necessary. Unique solutions in these analyses can only be expected if sufficient empirical information about spin degrees of freedom is available. The measurement of spin observables in pion photoproduction is the focus of this thesis. The polarized electron beam of the Mainz Microtron (MAMI) was used to produce high-intensity, polarized photon beams with tagged energies up to 1.47 GeV. A "frozen-spin" Butanol target in combination with an almost 4π detector setup consisting of the Crystal Ball and the TAPS calorimeters allowed the precise determination of the helicity dependence of the γp → π0p reaction. In this thesis, as an improvement of the target setup, an internal polarizing solenoid has been constructed and tested. A magnetic field of 2.32 T and homogeneity of 1.22×10−3 in the target volume have been achieved. The helicity asymmetry E, i.e., the difference of events with total helicity 1/2 and 3/2 divided by the sum, was determined from data taken in the years 2013-14. The subtraction of background events arising from nucleons bound in Carbon and Oxygen was an important part of the analysis. The results for the asymmetry E are compared to existing data and predictions from various models. The results show a reasonable agreement to the models in the energy region of the ∆(1232)-resonance but large discrepancies are observed for energy above 600 MeV. The expansion of the present data in terms of Legendre polynomials, shows the sensitivity of the data to partial wave amplitudes up to F-waves. Additionally, a first, preliminary multipole analysis of the present data together with other results from the Crystal Ball experiment has been as been performed.
Resumo:
Il presente lavoro si propone di sviluppare una analogia formale tra sistemi dinamici e teoria della computazione in relazione all’emergenza di proprietà biologiche da tali sistemi. Il primo capitolo sarà dedicato all’estensione della teoria delle macchine di Turing ad un più ampio contesto di funzioni computabili e debolmente computabili. Mostreremo quindi come un sistema dinamico continuo possa essere elaborato da una macchina computante, e come proprietà informative quali l’universalità possano essere naturalmente estese alla fisica attraverso questo ponte formale. Nel secondo capitolo applicheremo i risultati teorici derivati nel primo allo sviluppo di un sistema chimico che mostri tali proprietà di universalità, ponendo particolare attenzione alla plausibilità fisica di tale sistema.
Resumo:
We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.