988 resultados para additive interpolation error expansion
Resumo:
There are two key types of selection in a plant breeding program, namely selection of hybrids for potential commercial use and the selection of parents for use in future breeding. Oakey et al. (in Theoretical and Applied Genetics 113, 809-819, 2006) showed how both of these aims could be achieved using pedigree information in a mixed model analysis in order to partition genetic effects into additive and non-additive effects. Their approach was developed for field trial data subject to spatial variation. In this paper we extend the approach for data from trials subject to interplot competition. We show how the approach may be used to obtain predictions of pure stand additive and non-additive effects. We develop the methodology in the context of a single field trial using an example from an Australian sorghum breeding program.
Resumo:
A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.
Resumo:
Background:Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings:Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and FST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise FST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04).Conclusions: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Resumo:
Circulating tumor cells (CTCs) are the seeds for cancer metastases development, which is responsible for >90% of cancer-related deaths. Accurate quantification of CTCs in human fluids could be an invaluable tool for understanding cancer prognosis, delivering personalized medicine to prevent metastasis and finding cancer therapy effectiveness. Although CTCs were first discovered more than 200 years ago, until now it has been a nightmare for clinical practitioners to capture and diagnose CTCs in clinical settings. Our society needs rapid, sensitive, and reliable assays to identify the CTCs from blood in order to help save millions of lives. Due to the phenotypic EMT transition, CTCs are undetected for more than one-third of metastatic breast cancer patients in clinics. To tackle the above challenges, the first volume in “Circulating Tumor Cells (CTCs): Detection Methods, Health Impact and Emerging Clinical Challenges discusses recent developments of different technologies, which have the capability to target and elucidate the phenotype heterogenity of CTCS. It contains seven chapters written by world leaders in this area, covering basic science to possible device design which can have beneficial applications in society. This book is unique in its design and content, providing an in-depth analysis to elucidate biological mechanisms of cancer disease progression, CTC detection challenges, possible health effects and the latest research on evolving technologies which have the capability to tackle the above challenges. It describes the broad range of coverage on understanding CTCs biology from early predictors of the metastatic spread of cancer, new promising technology for CTC separation and detection in clinical environment and monitoring therapy efficacy via finding the heterogeneous nature of CTCs. (Imprint: Nova Biomedical)
Resumo:
A simple error detecting and correcting procedure is described for nonbinary symbol words; here, the error position is located using the Hamming method and the correct symbol is substituted using a modulo-check procedure.
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.
Resumo:
A rare opportunity to test hypotheses about potential fishery benefits of large-scale closures was initiated in July 2004 when an additional 28.4% of the 348 000 km2 Great Barrier Reef (GBR) region of Queensland, Australia was closed to all fishing. Advice to the Australian and Queensland governments that supported this initiative predicted these additional closures would generate minimal (10%) initial reductions in both catch and landed value within the GBR area, with recovery of catches becoming apparent after three years. To test these predictions, commercial fisheries data from the GBR area and from the two adjacent (non-GBR) areas of Queensland were compared for the periods immediately before and after the closures were implemented. The observed means for total annual catch and value within the GBR declined from pre-closure (2000–2003) levels of 12 780 Mg and Australian $160 million, to initial post-closure (2005–2008) levels of 8143 Mg and $102 million; decreases of 35% and 36% respectively. Because the reference areas in the non-GBR had minimal changes in catch and value, the beyond-BACI (before, after, control, impact) analyses estimated initial net reductions within the GBR of 35% for both total catch and value. There was no evidence of recovery in total catch levels or any comparative improvement in catch rates within the GBR nine years after implementation. These results are not consistent with the advice to governments that the closures would have minimal initial impacts and rapidly generate benefits to fisheries in the GBR through increased juvenile recruitment and adult spillovers. Instead, the absence of evidence of recovery in catches to date currently supports an alternative hypothesis that where there is already effective fisheries management, the closing of areas to all fishing will generate reductions in overall catches similar to the percentage of the fished area that is closed.
Resumo:
This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,agr, are measured using a three-terminal capacitance bridge. Theagr-values show a sharp maximum near the glass transition temperature,T g. The ultrasonic velocities also show a large temperature derivative, dV/dT nearT g. The data are discussed in terms of existing theories of the glass transition. The continuous change inagr shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearT g. The ultrasonic velocities and dV/dT have contributions arising from this deformation.
Resumo:
Sirex woodwasp was detected in Queensland in 2009 and rapidly established in softwood plantations (Pinus radiata and P. taeda) in southern border regions. Biocontrol inoculations of Deladenus siricidicola began soon after, and adults were monitored to assess the success of the programme. Wasp size, sex ratios, emergence phenology and nematode parasitism rates were recorded, along with the assessment of wild-caught females. Patterns varied within and among seasons, but overall, P. taeda appeared to be a less suitable host than P. radiata, producing smaller adults, lower fat body content and fewer females. Sirex emerging from P. taeda also showed lower levels of nematode parasitism, possibly due to interactions with the more abundant blue-stain fungus in this host. Sirex adults generally emerged between November and March, with distinct peaks in January and March, separated by a marked drop in emergence in early February. Temperature provided the best correlate of seasonal emergence, with fortnights with higher mean minimum temperatures having higher numbers of Sirex emerging. This has implications for the anticipated northward spread of Sirex into sub-tropical coastal plantation regions. Following four seasons of inundative release of nematodes in Queensland, parasitism rates remain low and have resulted in only partial sterilization of infected females.