905 resultados para Technology (General)
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
The use of remote sensing for monitoring of submerged aquatic vegetation (SAV) in fluvial environments has been limited by the spatial and spectral resolution of available image data. The absorption of light in water also complicates the use of common image analysis methods. This paper presents the results of a study that uses very high resolution (VHR) image data, collected with a Near Infrared sensitive DSLR camera, to map the distribution of SAV species for three sites along the Desselse Nete, a lowland river in Flanders, Belgium. Plant species, including Ranunculus aquatilis L., Callitriche obtusangula Le Gall, Potamogeton natans L., Sparganium emersum L. and Potamogeton crispus L., were classified from the data using Object-Based Image Analysis (OBIA) and expert knowledge. A classification rule set based on a combination of both spectral and structural image variation (e.g. texture and shape) was developed for images from two sites. A comparison of the classifications with manually delineated ground truth maps resulted for both sites in 61% overall accuracy. Application of the rule set to a third validation image, resulted in 53% overall accuracy. These consistent results show promise for species level mapping in such biodiverse environments, but also prompt a discussion on assessment of classification accuracy.
Resumo:
In a world where students are increasing digitally tethered to powerful, ‘always on’ mobile devices, new models of engagement and approaches to teaching and learning are required from educators. Serious Games (SG) have proved to have instructional potential but there is still a lack of methodologies and tools not only for their design but also to support game analysis and assessment. This paper explores the use of SG to increase student engagement and retention. The development phase of the Circuit Warz game is presented to demonstrate how electronic engineering education can be radically reimagined to create immersive, highly engaging learning experiences that are problem-centered and pedagogically sound. The Learning Mechanics–Game Mechanics (LM-GM) framework for SG game analysis is introduced and its practical use in an educational game design scenario is shown as a case study.
Resumo:
Computer game technology produces compelling ‘immersive environments’ where our digitally-native youth play and explore. Players absorb visual, auditory and other signs and process these in real time, making rapid choices on how to move through the game-space to experience ‘meaningful play’. How can immersive environments be designed to elicit perception and understanding of signs? In this paper we explore game design and gameplay from a semiotic perspective, focusing on the creation of meaning for players as they play the game. We propose a theory of game design based on semiotics.
Resumo:
Computer games are significant since they embody our youngsters’ engagement with contemporary culture, including both play and education. These games rely heavily on visuals, systems of sign and expression based on concepts and principles of Art and Architecture. We are researching a new genre of computer games, ‘Educational Immersive Environments’ (EIEs) to provide educational materials suitable for the school classroom. Close collaboration with subject teachers is necessary, but we feel a specific need to engage with the practicing artist, the art theoretician and historian. Our EIEs are loaded with multimedia (but especially visual) signs which act to direct the learner and provide the ‘game-play’ experience forming semiotic systems. We suggest the hypothesis that computer games are a space of deconstruction and reconstruction (DeRe): When players enter the game their physical world and their culture is torn apart; they move in a semiotic system which serves to reconstruct an alternate reality where disbelief is suspended. The semiotic system draws heavily on visuals which direct the players’ interactions and produce motivating gameplay. These can establish a reconstructed culture and emerging game narrative. We have recently tested our hypothesis and have used this in developing design principles for computer game designers. Yet there are outstanding issues concerning the nature of the visuals used in computer games, and so questions for contemporary artists. Currently, the computer game industry employs artists in a ‘classical’ role in production of concept sketches, storyboards and 3D content. But this is based on a specification from the client which restricts the artist in intellectual freedom. Our DeRe hypothesis places the artist at the generative centre, to inform the game designer how art may inform our DeRe semiotic spaces. This must of course begin with the artists’ understanding of DeRe in this time when our ‘identities are becoming increasingly fractured, networked, virtualized and distributed’ We hope to persuade artists to engage with the medium of computer game technology to explore these issues. In particular, we pose several questions to the artist: (i) How can particular ‘periods’ in art history be used to inform the design of computer games? (ii) How can specific artistic elements or devices be used to design ‘signs’ to guide the player through the game? (iii) How can visual material be integrated with other semiotic strata such as text and audio?
Resumo:
In this paper, we explore the use of a commercial computer game-engine “Unreal Tournament 2004” (UT2004) to produce “Immersive Environments” (IEs) which provide the digital artist with a new mode of expression, to engage with the viewing public as individuals or in collaboration. We explore two modalities of Art, the ‘gallery’ and the ‘installation’. Through a reflection on various twentieth-century abstract artists, we indicate how this technology may be engaged to more fully realize their philosophies and projects. Finally, we suggest how this technology may lead to new forms of artistic expression in our contemporary digital world.
Resumo:
At a recent conference on games in education, we made a radical decision to transform our standard presentation of PowerPoint slides and computer game demonstrations into a unified whole, inserting the PowerPoint presentation to the computer game. This opened up various questions relating to learning and teaching theories, which were debated by the conference delegates. In this paper, we reflect on these discussions, we present our initial experiment, and relate this to various theories of learning and teaching. In particular, we consider the applicability of “concept maps” to inform the construction of educational materials, especially their topological, geometrical and pedagogical significance. We supplement this “spatial” dimension with a theory of the dynamic, temporal dimension, grounded in a context of learning processes, such as Kolb’s learning cycle. Finally, we address the multi-player aspects of computer games, and relate this to the theories of social and collaborative learning. This paper attempts to explore various theoretical bases, and so support the development of a new learning and teaching virtual reality approach.
Resumo:
Commercial computer games contain “physics engine” components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a detailed scientific investigation of the physics engine of Unreal Tournament 2004 (UT2004). This article presents their motivation, methodology, and results. The author presents the findings of experiments that probed the accessibility and fidelity of UT2004's physics engine, examples of educational materials developed, and an evaluation of their use in high school classes. The associated pedagogical implications of this approach are discussed, and the author suggests guidelines for educators on how to deploy the approach. Key resources are presented on an associated Web site.
Resumo:
Computer games such as Unreal Tournament (UT2004 and UT3) contain a 'physics engine' responsible for producing believable dynamic interactions between players and objects in the three-dimensional (3D) virtual world of a game. Through a series of probing experiments we have evaluated the fidelity and internal consistency of the UT2004 physics engine. These experiments have then led to the production of resources which may be used by learners and teachers of secondary-school physics. We also suggest an approach to learning, where both teachers and pupils may produce learning materials using the Unreal Tournament editor 'UnrealEd'.
Resumo:
At the University of Worcester we are continually striving to find new approaches to the learning and teaching of programming, to improve the quality of learning and the student experience. Over the past three years we have used the contexts of robotics, computer games, and most recently a study of Abstract Art to this end. This paper discusses our motivation for using Abstract Art as a context, details our principles and methodology, and reports on an evaluation of the student experience. Our basic tenet is that one can view the works of artists such as Kandinsky, Klee and Malevich as Object-Oriented (OO) constructions. Discussion of these works can therefore be used to introduce OO principles, to explore the meaning of classes, methods and attributes and finally to synthesize new works of art through Java code. This research has been conducted during delivery of an “Advanced OOP (Java)” programming module at final-year Undergraduate level, and during a Masters’ OO-Programming (Java) module. This allows a comparative evaluation of novice and experienced programmers’ learning. In this paper, we identify several instructional factors which emerge from our approach, and reflect upon the associated pedagogy. A Catalogue of ArtApplets is provided at the associated web-site.