928 resultados para LIQUID-PHASE EPITAXY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An acid-functionalized ionic liquid was entrapped within a silica gel to yield a recyclable liquid phase catalyst for the dehydration of rac-1-phenyl ethanol. Hot filtration tests showed that the activity was within the gel. Comparison with an analogous SILP system revealed fundamental differences in the properties and behavior of the materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electronic properties of liquid hydrogen fluoride (HF) were investigated by carrying out sequential quantum mechanics/Born-Oppenheimer molecular dynamics. The structure of the liquid is in good agreement with recent experimental information. Emphasis was placed on the analysis of polarisation effects, dynamic polarisability and electronic excitations in liquid HF. Our results indicate an increase in liquid phase of the dipole moment (similar to 0.5 D) and isotropic polarisability (5%) relative to their gas-phase values. Our best estimate for the first vertical excitation energy in liquid HF indicates a blue-shift of 0.4 +/- 0.2 eV relative to that of the gas-phase monomer (10.4 eV). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The flotation capacity was determined for cells of yeasts strains belonging to the genera Hansenula, Candida and Saccharomyces. A heterogeneous group of yeasts, comprising strains from the three genera, was identified as showing high flotation capacities (degrees of flotation above 50%), which were practically not affected by variations in medium pH in both the synthetic medium and 2% molasses. Thus, the flotation capacity of the cells in this yeast group seemed strongly dependent on the liquid phase properties and/or growth medium composition, more than on the simple variation in pH of the cell suspensions. A second group of strains, belonging to the Saccharomyces genus, including also brewing yeast strains, was identified as having lower flotation capacities (degrees of flotation below 50% at pH 1.5), which showed no alterations or variations significantly affected by the medium pH. Foam volumes obtained with Saccharomyces strains were greater in synthetic media than in molasses owing to the higher air flow rates required for flotation in molasses. The flotation efficiency decreased in molasses in all cases as well as the foam volume, except in the case of Hansenula cells, which showed an increased foam volume. This was probably due to variations in product excretion by the different yeasts and/or differences in cell wall composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ab initio (restricted Hartree-Fock and DFT) and molecular mechanics calculations at MM2 level were performed for N-methylformamide (NMF) molecule and for three dimers in order to investigate the relative stability of the cis and trans conformers. The ab initio calculations show that no intramolecular interaction is relevant for the stability of the conformers explored. The trans conformer is the most stable. The MM calculations revealed that a double H-bonded cyclic cis-cis dimer is the most stable among the studied dimers, followed by a 'linear' H-bonded trans-trans dimer. This 'linear' dimer, however, is prevalent in the liquid phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ionization of chlorophyll-c(2) in liquid methanol was investigated by a sequential quantum mechanical/Monte Carlo approach. Focus was placed on the determination of the first ionization energy of chlorophyll-c(2). The results show that the first vertical ionization energy (IE) is red-shifted by 0.47 +/- 0.24 eV relative to the gas-phase value. The red-shift of the chlorophyll-c(2) IE in the liquid phase can be explained by Mg center dot center dot center dot OH hydrogen bonding and long-ranged electrostatic interactions in solution. The ionization threshold for chlorophyll-c2 in liquid methanol is close to 6 eV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]Until recently, sample preparation was carried out using traditional techniques, such as liquid–liquid extraction (LLE), that use large volumes of organic solvents. Solid-phase extraction (SPE) uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and time-of-flight mass spectrometric (TOF/MS) techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME), stir bar sorptive extraction (SBSE) and liquid-phase microextraction (LPME). Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These compounds must be monitored because, although they are detected in low concentrations, they might be harmful toward ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high lattice mismatch between III-nitride binaries (InN, GaN and AlN) remains a key problem to grow high quality III-nitride heterostructures. Recent interest has been focused on the growth of high-quality InAlN layers, with approximately 18% of indium incorporation, in-plane lattice-matched (LM) to GaN. While a lot of work has been done by metal-organic vapour phase epitaxy (MOVPE) by Carlin and co-workers, its growth by molecular beam epitaxy (MBE) is still in infancy

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phase thermodynamics is often perceived as a difficult subject that many students never become fully comfortable with. The Gibbsian geometrical framework can help students to gain a better understanding of phase equilibria. An exercise to interpret the vapor-liquid equilibrium of a binary azeotropic mixture, using the equilibrium condition based on the common tangent plane criterion (the Gibbs stability test), is presented in this paper. From a T-composition phase diagram for the mixture, the temperature is set at different values: above, intermediate to, and below the boiling temperatures of the pure components, to intersect different regions of the system. Students prepare an Excel spreadsheet where the Gibbs energy of mixing of the vapor and liquid mixtures are calculated and represented over the whole range of compositions and then, apply the Gibbs stability test to ascertain the aggregation state of the system and to calculate the VL phase equilibrium compositions. Finally, Matlab is used to generate the 3D Gibbs energy of mixing surfaces for both phases over the whole range of temperatures which facilitates the geometrical interpretation of the vapor-liquid equilibrium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid–liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L−1 was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L−1, which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L−1 and 1 µg L−1, respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L−1) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained.