889 resultados para Glutathione reductase
Resumo:
An experimental charge density analysis of an anti-TB drug ethionamide was carried out from high resolution X-ray diffraction at 100 K to understand its charge density distribution and electrostatic properties. The experimental results were validated from periodic theoretical charge density calculations performed using CRYSTAL09 at the B3LYP/6-31G** level of theory. The electron density rho(bcp)(r) and the Laplacian of electron density del(2)(rho bcp)(r) of the molecule calculated from both the methods display the charge density distribution of the ethionamide molecule in the crystal field. The electrostatic potential map shows a large electropositive region around the pyridine ring and a large electronegative region at the vicinity of the thiol atom. The calculated experimental dipole moment is 10.6D, which is higher than the value calculated from theory (8.2D). The topological properties of C-H center dot center dot center dot S, N-H center dot center dot center dot N and N-H center dot center dot center dot S hydrogen bonds were calculated, revealing their strength. The charge density analysis of the ethionamide molecule determined from both the experiment and theory gives the topological and electrostatic properties of the molecule, which allows to precisely understand the nature of intra and intermolecular interactions.
Resumo:
Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.
Resumo:
Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (E-GSH; Grx1-roGFP2) and measured subcellular changes in E-GSH during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial E-GSH (approximately -310 mV), active viral replication induces substantial oxidative stress (E-GSH more than -240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular E-GSH between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about similar to 25 mV in E-GSH is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular E-GSH. Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.
Resumo:
Novel isoselenazoles with high glutathione peroxidase (GPx) and peroxiredoxin (Prx) activities provide remarkable cytoprotection to human cells, mainly by exhibiting antioxidant activities in the presence of cellular thiols. The cytotoxicity of the isoselenazoles is found to be significantly lower than that of ebselen, which is being clinically evaluated by several groups for the treatment of reperfusion injuries and stroke, hearing loss, and bipolar disorder. The compounds reported in this paper have the potential to be used as therapeutic agents for disorders mediated by reactive oxygen species.
Resumo:
Reactive oxygen species (ROS)-mediated diseased states are of major concern in modern day life. Under oxidative stress conditions, the cellular antioxidants deplete, leading to several biological disorders. Small molecule mimics of different antioxidant enzymes are found to be useful in supplementing the biological systems to detoxify ROS. In this study, we have synthesized a series of amine or amide-based diselenides containing an additional amino group as glutathione peroxidase (GPx) mimetics. These diselenides act as a catalytic triad model of the native GPx featuring two basic amino groups near the selenium centre. A comparison of the catalytic activities reveals that the additional amino group increases the activity significantly in the presence of aromatic thiols. Deprotonation of thiol by an additional amine either stabilizes the selenolate intermediate or facilitates the nucleophilic attack of thiol in other intermediates. The Se-77 NMR experiments and DFT calculations show that the amino group does not have any significant effect on the catalytic intermediates. Although the amino moiety increases the nucleophilicity of the thiol, it does not prevent the thiol exchange reactions that take place in the selenenyl sulfide intermediates.
Resumo:
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Resumo:
The tripeptide glutathione (GSH) is one of the most abundant peptides and the major repository for nonprotein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thiol-disulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influence the redox couple, and hence the pK(a) value of the cysteine residue of GSH is critical to its functioning. Here we report ab initio Car-Parrinello molecular dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. We show that the free-energy landscape for the protonation-deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides shift in the dissociation constant values as compared with the isolated accurate estimates of the pK(a) and correctly predicts the cysteine amino acid.