895 resultados para Biologia molecular e celular
Resumo:
Células tumorais desenvolvem diversas estratégias para escapar da identificação e eliminação pelo sistema imune. Dessa forma, a investigação dos mecanismos envolvidos na comunicação celular no microambiente tumoral e na desregulação local do sistema imune é crítica para uma melhor compreensão da progressão da doença e para o desenvolvimento de alternativas terapêuticas mais eficazes. Nós aqui demonstramos que SIGIRR/IL-1R8, um importante regulador negativo de receptores de Interleucina-1 (ILRs) e receptores do tipo Toll (TLRs), apresenta expressão aumentada em uma linhagem celular epitelial mamária transformada pela superexpressão do oncogene HER2 e em tumores primários de mama, e promove o crescimento tumoral e metástase através da modulação da inflamação associada ao câncer e da atenuação da resposta imune antitumoral. Observamos que IL-1R8 tem sua expressão correlacionada com HER2 em tecidos mamários e sua alta expressão é fator de pior prognóstico em câncer de mama de baixo grau. Notavelmente, níveis aumentados de IL-1R8 foram observados especialmente nos subtipos HER2+ e Luminais de tumores de mama, e sua expressão aumentada em células epiteliais de mama transformadas por HER2 diminui a ativação da via de NF-κB e a expressão de diferentes citocinas pro-inflamatórias (IL-6, IL-8, TNF, CSF2, CSF3 e IFN-β1). Meio condicionado de células transformadas por HER2, mas não de variantes celulares com o gene IL-1R8 silenciado, induz a polarização de macrófagos para o fenótipo M2 e inibe a ativação de células NK. Em um modelo murino transgênico de tumorigênese espontânea mediada por HER2, MMTV-neu, verificamos que a deficiência de IL-1R8 (IL-1R8-/-neu) retardou o aparecimento de tumores e reduziu a incidência, a carga tumoral e a disseminação metastática. Contudo, não foram observadas diferenças significativas no crescimento tumoral quando animais IL-1R8-/-neu receberam medula óssea de animais IL-1R8+/+, confirmando um papel importante da expressão de IL-1R8 em células não hematopoiéticas na tumorigênese da mama. Tumores IL-1R8+/+neu apresentaram maiores níveis de citocinas pró-inflamatórias como IL-1β e VEGF, e menores níveis da citocina imunomodulatória IFN-γ. Além disso, tumores que expressavam IL-1R8 apresentaram menor infiltrado de células NK maduras, células dendríticas (DCs) e linfócitos T-CD8+ e um maior infiltrado de macrófagos M2 e linfócitos T-CD4+. Coletivamente, esses resultados indicam que a expressão de IL-1R8 em tumores de mama pode representar um novo mecanismo de escape da resposta imune e suportam IL-1R8 como potencial alvo terapêutico.
Resumo:
Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
The occurrence of bioactive compounds in marine organisms comes awaking the interest of the pharmaceutical industry. Heparin, a sulfated polysaccharide which presence was already identified in several marine invertebrates, is very attractive due its remarkable functional versatility. Besides to intervene in blood coagulation, this molecule has a great anti-inflammatory potential. However, its strong anticoagulant activity difficult the clinical exploitation of its anti-inflammatory properties. Thus, the aims of this work were to evaluate the effect of a heparin-like compound (heparinoid), isolated from the cephalotorax of the Litopenaeus vannamei shrimp, on the inflammatory response, hemostasia and synthesis of antithrombotic heparan sulfate by endothelial cells, besides studying some aspects concerning its structure. The purified heparinoid was structurally characterized following an analytical boarding, involving electrophoresis and chromatography. The structural analysis have shown that this compound possess a high content of glucuronic acid residues and disulfated disaccharide units. In contrast to mammalian heparin, the heparinoid was incapable to stimulate the synthesis of heparan sulfate by endothelial cells in the tested concentrations, beyond to show reduced anticoagulant activity and hemorrhagic effect. In a model of acute inflammation, the compound isolated from the shrimp reduced more than 50% of the cellular infiltration. Besides reduce the activity of MMP-9 and proMMP-2 of the peritoneal lavage of inflamed animals, the heparinoid also reduced the activity of MMP-9 secreted by activated human leukocytes. These results demonstrate the potential of heparinoid from L. vannamei to intervene in the inflammatory response. For possessing reduced anticoagulant activity and hemorrhagic effect, this compound can serve as a structural model to direct the development of more specific therapeutical agents to the treatment of inflammatory diseases
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2015.
Resumo:
In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway
Resumo:
In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy
Resumo:
Chitin is an important structural component of the cellular wall of fungi and exoskeleton of many invertebrate plagues, such as insects and nematodes. In digestory systems of insects it forms a named matrix of peritrophic membrane. One of the most studied interaction models protein-carbohydrate is the model that involves chitin-binding proteins. Among the involved characterized domains already in this interaction if they detach the hevein domain (HD), from of Hevea brasiliensis (Rubber tree), the R&R consensus domain (R&R), found in cuticular proteins of insects, and the motif called in this study as conglicinin motif (CD), found in the cristallography structure of the β-conglicinin bounded with GlcNac. These three chitin-binding domains had been used to determine which of them could be involved in silico in the interaction of Canavalia ensiformis and Vigna unguiculata vicilins with chitin, as well as associate these results with the WD50 of these vicilins for Callosobruchus maculatus larvae. The technique of comparative modeling was used for construction of the model 3D of the vicilin of V. unguiculata, that was not found in the data bases. Using the ClustalW program it was gotten localization of these domains in the vicilins primary structure. The domains R&R and CD had been found with bigger homology in the vicilins primary sequences and had been target of interaction studies. Through program GRAMM models of interaction ( dockings ) of the vicilins with GlcNac had been gotten. The results had shown that, through analysis in silico, HD is not part of the vicilins structures, proving the result gotten with the alignment of the primary sequences; the R&R domain, although not to have structural similarity in the vicilins, probably it has a participation in the activity of interaction of these with GlcNac; whereas the CD domain participates directly in the interaction of the vicilins with GlcNac. These results in silico show that the amino acid number, the types and the amount of binding made for the CD motif with GlcNac seem to be directly associates to the deleterious power that these vicilins show for C. maculatus larvae. This can give an initial step in the briefing of as the vicilins interact with alive chitin in and exert its toxic power for insects that possess peritrophic membrane
Resumo:
Heparan sulfate (HS) and Heparin (Hep) glycosaminoglycans (GAGs) are heterogeneous and highly charged polysaccharides. HS is structurally related to Hep but is much less substituted with sulfo groups than heparin and has a more varied structure (or sequence). Because of structural similiarities between these two polymers, they have been described together as heparinoids . Both chains bind a variety of proteins and mediate various physiologically important processes including, blood coagulation, cell adhesion and growth factor regulation. Heparinoids with structural characteristics similar to these described from HS and/or Hep from mammalian tissues have been isolated from different species of invertebrates, although only a few heparinoids from unusual sources have been characterized. The present study describes the presence of unusual heparinoids population from Artemia franciscana, isolated after proteolysis and fractionation by ion exchange resin and named, F-3.0M. The study model in vivo were hemostasis (rat tail scarification) and inflamatoty activity. The tests in vitro were used for coagulations assays (PT and APTT). The analyse of the heparinoids eluted with 3,0M NaCl showed electrophoretic migration in different buffer systems a single band with a behaviour intermediate between those of mammalian HEP and HS. The main products obtained from Artemia heparinoids after enzymatic degradation with heparitinases I and II from F. heparinum were N-sulphated disaccharides (∆U-GlcNS,6S/ ∆U,2S-GlcNS and ∆U-GlcNS) and N-acetylated disaccharides (∆U, GlcNAc). This heparinoid had a lower hemorrhagic effect (400μg/ml) when compared to unfractiionated heparins(25μg/ml).The results also suggest a negligible APTT activity of this heparinoid (62.2s). No action was observed on PT indicating that F-3.0M haven t action on the extrinsic pathway. The results showed that the fraction F- 3.0M have inhibitory effect on migration of leukocytes, 64.5% in the concentration of 10 μg/ml (P<0.001). The search for new heparin and/or heparan sulphates analogs devoid of anticoagulant activity is an atractive alternative and may open up a wide variety of new therapeutic applications
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.
Resumo:
Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
A chymotrypsin inhibitor was purified from Erythrina velutina seeds by ammonium sulphate fractionation, affinities chromatographies on Trypsin-Sepharose, Quimotrypsin-Sepharose and reversed phase C-18 FPLC/AKTA system. The inhibitor, named EvCI, shown molecular mass of 17 kDa, as determined by SDSPAGE. 2D-PAGE showed four isoinhibitors with pI values of 4,42, 4,63, 4,83 and 5,06, with molecular mass of 17 kDa each. The aminoacid sequence of EvCI was determined by MALDI-TOF-MS and showed a high similarity with other Kunitz-type inhibitor of Erythrina variegata. EvCI competitively inhibited chymotrypsin, with Ki of 4 x10-8 M, but did not inhibited trypsin, pancreatic elastase, bromelain and papain. The inhibitory activity of EvCI was stable over wide pH and temperature ranges. In the presence of DTT 100 mM for 120 min, EvCI lost 50 % of activity. Cytotoxicity was studied in HeLa, MDA, HepG2, K562 and PC3 cells after 72-h incubation period. EvCl inhibited HeLa cells growth with an IC50 value of 50 μg/ml. Subsequent studies in HeLa cells analysis of cell death by annexin V/PI double-staining and cell cycle, using flow cytometry. The results provide evidence for a cytostatic activity of EvCl and support further studies on potential application of this inhibitors as an antiproliferative agent in combined therapy against cervical cancer
Resumo:
The coast of Rio Grande do Norte has more than 100 species of seaweed, mostly unexplored regarding their pharmacological potential. The sulfated polysaccharides (PS) are by far the more seaweed compounds studied, these present a range of biological properties, such as anticoagulant activity, anti-inflammatory, antitumor and antioxidant properties. In this study, we extract sulfated polysaccharide rich-extracts of eleven algae from the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; Dictyota mertensis; Sargassum filipendula; Spatoglossum schröederi; Gracilaria caudata; Caulerpa cupresoides; Caulerpa prolifera; Caulerpa sertularioides e Codim isthmocladum), and these were evaluated for the potential anticoagulant, antioxidant and antiproliferative. All polysaccharide extracts showed activity for anticoagulant, antioxidant and/or antiproliferative activity, especially D. delicatula and S. filipendula, which showed the most prominent pharmacological potential, thereby being chosen to have their sulfated polysaccharides extracted. By fractionating method were obtained six fractions rich in sulfated polysaccharides to the algae D. delicatula (DD-0,5V, DD-0, 7V, DD-1,0v, DD-1,3v, DD-1,5v and DD-2,0) and five fractions to the alga S. filipendula (SF-0,5V, SF-0,7V, SF-1,0v, SF-1,5v and SF-2,0v). For the anticoagulant assay only the fractions of D. delicatula showed activity, with emphasis on DD-1, 5v that presented the most prominent activity, with APTT ratio similar to clexane® at 0.1 mg/mL. When evaluated the antioxidant potential, all fractions showed potential in all tests (total antioxidant capacity, hydroxyl and superoxide radicals scavenging, ferrous chelation and reducing power), however, the ability to chelate iron ions appears as the main mechanism antioxidant of sulfated polysaccharides from seaweed. In antiproliferative assay, all heterofucanas showed dose-dependent activity for the inhibition of cell proliferation of HeLa, however, with the exception of SF-0,7V, SF- 1,0v and SF-1,5v, all fractions showed antiproliferative activity against MC3T3, a normal cell line. The heterofucana SF-1,5V had its antiproliferative mechanism of action evaluated. This heterofucan induces apoptosis in HeLa cells by a pathway caspase independent, promoting the release of apoptosis Inducing Factor (AIF) in the cytosol, which in turn induces chromatin condensation and DNA fragmentation into 50Kb fragments. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.
Resumo:
A 140,0 kDa lectin was purified and characterized from the mushroom Clavaria cristata. The purification procedures from the crude extract of the mushroom comprised gel filtration chromatography on Sephacryl s200 and ion exchange on Resource Q column. The purified lectin agglutinated all types of human erythrocytes with preference for trypsinized type O erythrocytes. The haemagglutinating activity is dependent of Ca 2+ ions and was strongly inhibited by the glycoprotein bovine submaxillary mucin (BSM) up to the concentration of 0, 125 mg/mL. The C. cristata lectin (CcL) was stable in the pH range of 2,5-11,5 and termostable up to 80 °C. CcL molecular mass determined by gel filtration on a Superose 6 10 300 column was approximately 140,3 kDa. SDS polyacrilamide gel electrophoresis revealed a single band with a molecular mass of approximately 14,5 kDa, when the lectin was heated at 100 ⁰C in the presence or absence of β-mercaptoethanol. CcL induced activation of murine peritoneal macrophages in vitro resulting in the release of nitric oxide (NO), reaching the maximum production at 24 h. In experimental paw oedema model in mice, CcL showed proinflammatory activity being able to induce oedema formation. Cell viability of HepG2, MDA 435 e 3T3 cell lines was examined after 72 h of incubation with CcL in different concentrations (0,5-50 μg/mL). CcL inhibited HepG2 cells growth with an IC50 value of 50 μg/mL. In the present work, the observed immunomodulatory and antiproliferative effects indicate CcL as a possible immunomodulator compound, interfering in the macrophages immune response, taking possible anti-parasitic, anti-tumoral effects or diagnostic and/or therapeutic
Resumo:
Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided