985 resultados para prospective memory
Resumo:
The present study investigated whether memory for a room-sized spatial layout learned through auditory localization of sounds exhibits orientation dependence similar to that observed for spatial memory acquired from stationary viewing of the environment. Participants learned spatial layouts by viewing objects or localizing sounds and then performed judgments of relative direction among remembered locations. The results showed that direction judgments following auditory learning were performed most accurately at a particular orientation in the same way as were those following visual learning, indicating that auditorily encoded spatial memory is orientation dependent. In combination with previous findings that spatial memories derived from haptic and proprioceptive experiences are also orientation dependent, the present finding suggests that orientation dependence is a general functional property of human spatial memory independent of learning modality.
Resumo:
It has been shown that spatial information can be acquired from both visual and nonvisual modalities. The present study explored how spatial information from vision and proprioception was represented in memory, investigating orientation dependence of spatial memories acquired through visual and proprioceptive spatial learning. Experiment 1 examined whether visual learning alone and proprioceptive learning alone yielded orientation-dependent spatial memory. Results showed that spatial memories from both types of learning were orientation dependent. Experiment 2 explored how different orientations of the same environment were represented when they were learned visually and proprioceptively. Results showed that both visually and proprioceptively learned orientations were represented in spatial memory, suggesting that participants established two different reference systems based on each type of learning experience and interpreted the environment in terms of these two reference systems. The results provide some initial clues to how different modalities make unique contributions to spatial representations.
Resumo:
The present study investigated how object locations learned separately are integrated and represented as a single spatial layout in memory. Two experiments were conducted in which participants learned a room-sized spatial layout that was divided into two sets of five objects. Results suggested that integration across sets was performed efficiently when it was done during initial encoding of the environment but entailed cost in accuracy when it was attempted at the time of memory retrieval. These findings suggest that, once formed, spatial representations in memory generally remain independent and integrating them into a single representation requires additional cognitive processes.
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Resumo:
The generation of a correlation matrix for set of genomic sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. Each sequence may be millions of bases long and there may be thousands of such sequences which we wish to compare, so not all sequences may fit into main memory at the same time. Each sequence needs to be compared with every other sequence, so we will generally need to page some sequences in and out more than once. In order to minimize execution time we need to minimize this I/O. This paper develops an approach for faster and scalable computing of large-size correlation matrices through the maximal exploitation of available memory and reducing the number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different bioinformatics problems with different correlation matrix sizes. The significant performance improvement of the approach over previous work is demonstrated through benchmark examples.
Resumo:
MicroRNAs are small non-coding RNAs that mediate post-transcriptional gene silencing. Fear-extinction learning in C57/Bl6J mice led to increased expression of the brain-specific microRNA miR-128b, which disrupted stability of several plasticity-related target genes and regulated formation of fear-extinction memory. Increased miR-128b activity may therefore facilitate the transition from retrieval of the original fear memory toward the formation of a new fear-extinction memory.
Resumo:
It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.
Resumo:
Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time.
Resumo:
The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.
Resumo:
Background To determine the impact of cataract surgery on vision-related quality of life (VRQOL) and examine the association between objective visual measures and change in VRQOL after surgery among bilateral cataract patients in Ho Chi Minh City, Vietnam. Methods A cohort of older patients with bilateral cataract was assessed one week before and one to three months after first eye or both eye cataract surgery. Visual measures including visual acuity, contrast sensitivity and stereopsis were obtained. Vision-related quality of life was assessed using the NEI VFQ-25. Descriptive analyses and a generalized linear estimating equation (GEE) analysis were undertaken to measure change in VRQOL after surgery. Results Four hundred and thirteen patients were assessed before cataract surgery and 247 completed the follow-up assessment one to three months after first or both eye cataract surgery. Overall, VRQOL significantly improved after cataract surgery (p < 0.001) particularly after both eye surgeries. Binocular contrast sensitivity (p < 0.001) and stereopsis (p < 0.001) were also associated with change in VRQOL after cataract surgery. Visual acuity was not associated with VRQOL. Conclusions Cataract surgery significantly improved VRQOL among bilateral cataract patients in Vietnam. Contrast sensitivity as well as stereopsis, rather than visual acuity significantly affected VRQOL after cataract surgery.