976 resultados para physiological strain index


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of chemostat cultivation and a defined medium was used to demonstrate that uracil limitation leads to a drastic alteration in the physiology of auxotrophic cells of Saccharomyces cerevisiae. Under this condition, the carbon source is dissimilated mainly to ethanol and acetate, even in fully aerobic cultures grown at 0.1 h(-1), which is far below the critical dilution rate. Differently from nitrogen-, sulphur-, or phosphate-limited cultures, uracil limitation leads to residual sugar (either glucose or sucrose) concentrations below 2 mM, which characterizes a situation of double-limitation: by the carbon source and by uracil. Furthermore, the specific rates of CO(2) production and O(2) consumption are increased when compared to the corresponding prototrophic strain. We conclude that when auxotrophic strains are to be used for quantitative physiological studies, special attention must be paid to the cultivation conditions, mainly regarding medium formulation, in order to avoid limitation of growth by the auxotrophic nutrient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormones are likely to be important factors modulating the light-dependent anthocyanin accumulation. Here we analyzed anthocyanin contents in hypocotyls of near isogenic Micro-Tom (MT) tomato lines carrying hormone and phytochrome mutations, as single and double-mutant combinations. In order to recapitulate mutant phenotype, exogenous hormone applications were also performed Anthocyanin accumulation was promoted by exogenous abscisic acid (ABA) and inhibited by gibberellin (GA), in accordance to the reduced anthocyanin contents measured in ABA-deficient (notabills) and GA-constitutive response (procera) mutants. Exogenous cytokinin also enhanced anthocyanin levels in MT hypocotyls. Although auxin-insensitive chageotropica mutant exhibited higher anthocyanin contents, pharmacological approaches employing exogenous auxin and a transport inhibitor did not support a direct role of the hormone in anthocyanin accumulation Analysis of mutants exhibiting increased ethylene production (epwastic) or reduced sensitivity (Never ripe), together with pharmacological data obtained from plants treated with the hormone, indicated a limited role for ethylene in anthocyanin contents. Phytochrome-deficiency (aurea) and hormone double-mutant combinations exhibited phenotypes suggesting additive or synergistic interactions, but not fully espistatic ones, in the control of anthocyanin levels in tomato hypocotyls. Our results indicate that phytochrome-mediated anthocyanin accumulation in tomato hypocotyls is modulated by distinct hormone classes via both shared and independent pathways. (C) 2010 Elsevier Ireland Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalist pathogens frequently exist as a complex of genetically differentiated strains, which can differ in virulence and transmissibility. A description of the extent to which strain variability mediates host species competence is needed to understand disease dynamics for systems with both host and pathogen strain diversity. This study tested the hypothesis that strain-specific variation of a generalist vector-borne plant pathogen, Xylella fastidiosa, affects disease severity in alfalfa (Medicago sativa) and competence of this crop as a reservoir host. Alfalfa seedlings were inoculated with one of 23 X. fastidiosa isolates collected from different hosts, eight identified as belonging to an almond strain, and the remainder from a grape strain. Pathogen population, symptom severity and infection incidence were compared over five successive harvests. Infected plant size, measured mainly by plant height, internode length and above ground biomass, was reduced up to 50% compared to buffer-inoculated controls, and more severe symptoms were observed at later harvests and for higher pathogen populations. Grape isolates had higher bacterial populations within alfalfa than almond isolates. In addition, infection with grape isolates resulted in more severe alfalfa stunting than that caused by almond isolates. Moreover, there was a strong positive relationship between isolate multiplication rate and both symptom severity and infection persistence (i.e. maintenance of chronic infection within host). Isolates with low initial populations had low incidence at the final harvest, with one isolate dying out altogether. The results showed that X. fastidiosa-genetic diversity contributed to variation in alfalfa disease severity. The results also suggest that pathogen strain may mediate host competence via differences in bacterial population density and persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goias, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18-32 degrees C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18-30 degrees C range (more than 98%), and were also statistically higher than the emergence observed at 32 degrees C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18-32 degrees C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 degrees C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 degrees C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 degrees C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>The aim of the work was to shed light into histological, physiological and molecular changes of Fagus sylvatica seedlings infected with the root pathogen Phytophthora citricola with the final goal to distinguish between local and systemic responses. Real-time quantitative PCR analysis proved that P. citricola was able to grow from infected roots into hypocotyl and epicotyl tissue of F. sylvatica seedlings. Light microscopy showed many collapsed parenchyma cells of the cortex without being penetrated by the pathogen. Hyphae were mainly growing intracellular in parenchyma and xylem tissue. Transmission electron microscopy displayed disintegration of xylem vessels and of parenchyma cells. Inhibition of water uptake of infected beech seedlings was positively correlated with the concentration of zoospores used in the experiment. In addition, a split root experiment indicated that invertases were possibly involved locally and systemically in the conversion of sucrose of P. citricola infected roots. During the growth of the pathogen in roots, a transient expression of the 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidase gene was quantified in leaves which was detected in parallel with the first peak of a biphasic ethylene outburst. Additionally a systemic upregulation of aquaporin transcripts was mainly detected in leaves of beech seedlings infected with P. citricola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding resource capture can help design appropriate species combinations, planting designs and management. Leaf area index (LAI) and its longevity are the most important factors defining dry matter production and thus growth and productivity. The ecophysiological modifications and yield of rubber (Hevea spp.) in an agroforestry system (AFS) with beans (Phaseolus vulgaris L.) were studied. The experiment was established in Southeast-Brazil, with three rubber cultivars: IAN 3087, RRIM 600 and RRIM 527. The AFS comprised double rows of rubber trees along with beans sown in autumn and winter seasons in 1999. There was about 50% higher rubber yield per tree in the AFS than the rubber monoculture. Trees within the AFS responded to higher solar radiation availability with higher LAI and total foliage area, allowing its greater interception. All three cultivars had higher LAI in the AFS than monoculture, reaching maximum values in the AFS between April and May of 3.17 for RRIM 527; 2.83 for RRIM 600 and 2.28 for IAN 3087. The maximum LAI values for monocrop rubber trees were: 2.65, 2.62 and 1.99, respectively, for each cultivar. Rubber production and LAI were positively correlated in both the AFS and monoculture but leaf fall of rubber trees in the AFS was delayed and total phytomass was larger. It is suggested that trees in the AFS were under exploited and could yield more without compromising their life cycle if the tapping system was intensified. This shows how knowledge of LAI can be used to manage tapping intensity in the field, leading to higher rubber yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf area index (LAI) of fast-growing Eucalyptus plantations is highly dynamic both seasonally and interannually, and is spatially variable depending on pedo-climatic conditions. LAI is very important in determining the carbon and water balance of a stand, but is difficult to measure during a complete stand rotation and at large scales. Remote-sensing methods allowing the retrieval of LAI time series with accuracy and precision are therefore necessary. Here, we tested two methods for LAI estimation from MODIS 250m resolution red and near-infrared (NIR) reflectance time series. The first method involved the inversion of a coupled model of leaf reflectance and transmittance (PROSPECT4), soil reflectance (SOILSPECT) and canopy radiative transfer (4SAIL2). Model parameters other than the LAI were either fixed to measured constant values, or allowed to vary seasonally and/or with stand age according to trends observed in field measurements. The LAI was assumed to vary throughout the rotation following a series of alternately increasing and decreasing sigmoid curves. The parameters of each sigmoid curve that allowed the best fit of simulated canopy reflectance to MODIS red and NIR reflectance data were obtained by minimization techniques. The second method was based on a linear relationship between the LAI and values of the GEneralized Soil Adjusted Vegetation Index (GESAVI), which was calibrated using destructive LAI measurements made at two seasons, on Eucalyptus stands of different ages and productivity levels. The ability of each approach to reproduce field-measured LAI values was assessed, and uncertainty on results and parameter sensitivities were examined. Both methods offered a good fit between measured and estimated LAI (R(2) = 0.80 and R(2) = 0.62 for model inversion and GESAVI-based methods, respectively), but the GESAVI-based method overestimated the LAI at young ages. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 A degrees C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N(2) and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett-Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 mu g/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 A degrees C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.