842 resultados para linear matrix inequality (LMI) optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Early and persistent exposure to socioeconomic disadvantage impairs children’s health and wellbeing. However, it is unclear at what age health inequalities emerge or whether these relationships vary across ages and outcomes. We address these issues using cross-sectional Australian population data on the physical and developmental health of children at ages 0-1, 2-3, 4-5 and 6-7 years. Methods: 10 physical and developmental health outcomes were assessed in 2004 and 2006 for two cohorts each comprising around 5000 children. Socioeconomic position was measured as a composite of parental education, occupation and household income. Results: Lower socioeconomic position was associated with increased odds for poor outcomes. For physical health outcomes and socio-emotional competence, associations were similar across age groups and were consistent with either threshold effects (for poor general health, special healthcare needs and socio-emotional competence) or gradient effects (for illness with wheeze, sleep problems and injury). For socio-emotional difficulties, communication, vocabulary and emergent literacy, stronger socioeconomic associations were observed. The patterns were linear or accelerated and varied across ages. Conclusions: From very early childhood, social disadvantage was associated with poorer outcomes across most measures of physical and developmental health and showed no evidence of either strengthening or attenuating at older compared to younger ages. Findings confirm the importance of early childhood as a key focus for health promotion and prevention efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and IV classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving linear systems with SSE and discuss advantages and disadvantages of this approach based on our experimental study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre composite structures have become the most attractive candidate for civil engineering applications. Fibre reinforced plastic polymer (FRP) composite materials have been used in the rehabilitation and replacement of the old degrading traditional structures or build new structures. However, the lack of design standards for civil infrastructure limits their structural applications. The majority of the existing applications have been designed based on the research and guidelines provided by the fibre composite manufacturers or based on the designer’s experience. It has been a tendency that the final structure is generally over-designed. This paper provides a review on the available studies related to the design optimization of fibre composite structures used in civil engineering such as; plate, beam, box beam, sandwich panel, bridge girder, and bridge deck. Various optimization methods are presented and compared. In addition, the importance of using the appropriate optimization technique is discussed. An improved methodology, which considering experimental testing, numerical modelling, and design constrains, is proposed in the paper for design optimization of composite structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear (or continuous) assets are engineering infrastructure that usually spans long distances and can be divided into different segments, all of which perform the same function but may be subject to different loads and environmental factors. Typical linear assets include railway lines, roads, pipelines and cables. How and when to renew such assets are critical decisions for asset owners as they normally involves significant capital investment. Through investigating the characteristics of linear asset renewal decisions and identifying the critical requirements that are associated with renewal decisions, we present a multi-criteria decision support method to help optimise renewal decisions. A case study that concerns renewal of an economiser's tubing system is a coal-fired power station is adopted to demonstrate the application of this method. Although the paper concerns a particular linear asset decision type, the approach has broad applicability for linear asset management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard approach to tax compliance applies the economics-of-crime methodology pioneered by Becker (1968): in its first application, due to Allingham and Sandmo (1972) it models the behaviour of agents as a decision involving a choice of the extent of their income to report to tax authorities, given a certain institutional environment, represented by parameters such as the probability of detection and penalties in the event the agent is caught. While this basic framework yields important insights on tax compliance behavior, it has some critical limitations. Specifically, it indicates a level of compliance that is significantly below what is observed in the data. This thesis revisits the original framework with a view towards addressing this issue, and examining the political economy implications of tax evasion for progressivity in the tax structure. The approach followed involves building a macroeconomic, dynamic equilibrium model for the purpose of examining these issues, by using a step-wise model building procedure starting with some very simple variations of the basic Allingham and Sandmo construct, which are eventually integrated to a dynamic general equilibrium overlapping generations framework with heterogeneous agents. One of the variations involves incorporating the Allingham and Sandmo construct into a two-period model of a small open economy of the type originally attributed to Fisher (1930). A further variation of this simple construct involves allowing agents to initially decide whether to evade taxes or not. In the event they decide to evade, the agents then have to decide the extent of income or wealth they wish to under-report. We find that the ‘evade or not’ assumption has strikingly different and more realistic implications for the extent of evasion, and demonstrate that it is a more appropriate modeling strategy in the context of macroeconomic models, which are essentially dynamic in nature, and involve consumption smoothing across time and across various states of nature. Specifically, since deciding to undertake tax evasion impacts on the consumption smoothing ability of the agent by creating two states of nature in which the agent is ‘caught’ or ‘not caught’, there is a possibility that their utility under certainty, when they choose not to evade, is higher than the expected utility obtained when they choose to evade. Furthermore, the simple two-period model incorporating an ‘evade or not’ choice can be used to demonstrate some strikingly different political economy implications relative to its Allingham and Sandmo counterpart. In variations of the two models that allow for voting on the tax parameter, we find that agents typically choose to vote for a high degree of progressivity by choosing the highest available tax rate from the menu of choices available to them. There is, however, a small range of inequality levels for which agents in the ‘evade or not’ model vote for a relatively low value of the tax rate. The final steps in the model building procedure involve grafting the two-period models with a political economy choice into a dynamic overlapping generations setting with more general, non-linear tax schedules and a ‘cost-of evasion’ function that is increasing in the extent of evasion. Results based on numerical simulations of these models show further improvement in the model’s ability to match empirically plausible levels of tax evasion. In addition, the differences between the political economy implications of the ‘evade or not’ version of the model and its Allingham and Sandmo counterpart are now very striking; there is now a large range of values of the inequality parameter for which agents in the ‘evade or not’ model vote for a low degree of progressivity. This is because, in the ‘evade or not’ version of the model, low values of the tax rate encourages a large number of agents to choose the ‘not-evade’ option, so that the redistributive mechanism is more ‘efficient’ relative to the situations in which tax rates are high. Some further implications of the models of this thesis relate to whether variations in the level of inequality, and parameters such as the probability of detection and penalties for tax evasion matter for the political economy results. We find that (i) the political economy outcomes for the tax rate are quite insensitive to changes in inequality, and (ii) the voting outcomes change in non-monotonic ways in response to changes in the probability of detection and penalty rates. Specifically, the model suggests that changes in inequality should not matter, although the political outcome for the tax rate for a given level of inequality is conditional on whether there is a large or small or large extent of evasion in the economy. We conclude that further theoretical research into macroeconomic models of tax evasion is required to identify the structural relationships underpinning the link between inequality and redistribution in the presence of tax evasion. The models of this thesis provide a necessary first step in that direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays(FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri-diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.