896 resultados para joint offer by first and second plainitffs
Resumo:
CaCu3Fe2Sb2O12 is mechanically stable, thermodynamically stable at pressures above 18 GPa. Both GGA and GGA + U methods predict that it is a ferrimagnetic semiconductor with Fe3+ in high spin state (S = 5/2). The coupling of Fe-Cu is antiferromagnetic, while that of Cu-Cu is ferromagnetic. The calculated total spin moment is 6.17 mu(B).
Resumo:
The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3- Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3- Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d(2)) and Cr3+ 3d (d(3)) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 mu(B) for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t(2g) (t(2g)(3)) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.
Resumo:
Understanding animals' spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets' use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.
Resumo:
Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.
Resumo:
The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).
The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.
In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.
The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.
Resumo:
Introduction: When a medical emergency occurs in the prehospital environment, there is an expectation from the general public for medical students to offer assistance with a similar level of competence as qualified doctors. However, the question is raised; do medical students have sufficient training in first aid skills to fulfil the role expected of them?
Prior to the publication of the latest version of Tomorrow’s Doctors by the UK General Medical Council, a student selected component (SSC) in first aid was delivered at the medical school in Queen’s University Belfast (QUB), Northern Ireland. The overwhelming popularity of this SSC prompted a desire to investigate and understand students’ experiences of first aid.
Aim: To identify first and second year medical students’ knowledge of, and attitudes towards, first aid and their expectations of the medical curriculum.
Methods: A questionnaire was delivered using TurningPoint Audience Response System® during the second semester of the 2008 - 2009 academic year to all first and second year medical students at QUB.
Results: Less than half of the students felt that they had a good level of first aid knowledge, a third would feel confident helping in an emergency and only 10% would be confident leading an emergency situation. The vast majority of students believed first aid is beneficial, that the general public expect medical students to have the knowledge to handle an emergency situation, and that a full first aid course should be included in the core medical curriculum at an early stage. They did not believe it should be a pre-requisite for medical school.
Conclusion: Only a small proportion believed their first aid knowledge adequate. An overwhelming proportion believed that first aid training is beneficial and that the public expect competency in managing emergencies. This study clearly demonstrates students’ need and desire for first aid training in the core medical curriculum at an early stage and to the highest training level possible.
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
In this paper, we propose a multiuser cognitive relay network, where multiple secondary sources communicate with a secondary destination through the assistance of a secondary relay in the presence of secondary direct links and multiple primary receivers. We consider the two relaying protocols of amplify-and-forward (AF) and decode-and-forward (DF), and take into account the availability of direct links from the secondary sources to the secondary destination. With this in mind, we propose an optimal solution for cognitive multiuser scheduling by selecting the optimal secondary source, which maximizes the received signal-to-noise ratio (SNR) at the secondary destination using maximal ratio combining. This is done by taking into account both the direct link and the relay link in the multiuser selection criterion. For both AF and DF relaying protocols, we first derive closed-form expressions for the outage probability and then provide the asymptotic outage probability, which determines the diversity behavior of the multiuser cognitive relay network. Finally, this paper is corroborated by representative numerical examples.
Resumo:
We consider two interlinked non-linear interactions occurring simultaneously in a single chi((2)) crystal. Classical and quantum working regimes are considered and their peculiar properties analysed. In particular, we describe an experiment, realized in the classical regime, that verifies the holographic nature of the process, and predict, for the quantum regime, the generation of a fully inseparable tripartite Gaussian state of light that can be used to support a general 1--> 2 continuous variable telecloning protocol.
Resumo:
Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.
Resumo:
This paper reports a dendritic system which is capable of forming both one-component and two-component gels interestingly the addition of the second component can either increase or decrease the degree of gelation, depending on dendritic generation.
Resumo:
Environmental contamination and climate changes constitute two of the most serious problems affecting soil ecosystems in agricultural fields. Agriculture is nowadays a highly optimized process that strongly relies on the application of multiple pesticides to reduce losses and increase yield production. Although constituting, per se, a serious problem to soil biota, pesticide mixtures can assume an even higher relevance in a context of unfavourable environmental conditions. Surprisingly, frameworks currently established for environmental risk assessments keep not considering environmental stressors, such as temperature, soil moisture or UV radiation, as factors liable to influence the susceptibility of organisms to pesticides, or pesticide mixtures, which is raising increasing apprehension regarding their adequacy to actually estimate the risks posed by these compounds to the environment. Albeit the higher attention received on the last few years, the influence of environmental stressors on the behaviour and toxicity of chemical mixtures remains still poorly understood. Aiming to contribute for this discussion, the main goal of the present thesis was to evaluate the single and joint effects of natural stressors and pesticides to the terrestrial isopod Porcellionides pruinosus. The first approach consisted on evaluating the effects of several abiotic factors (temperature, soil moisture and UV radiation) on the performance of P. pruinosus using several endpoints: survival, feeding parameters, locomotor activity and avoidance behaviour. Results showed that these stressors might indeed affect P. pruinosus at relevant environmental conditions, thus suggesting the relevance of their consideration in ecotoxicological assays. At next, a multiple biomarker approach was used to have a closer insight into the pathways of damage of UV radiation and a broad spectrum of processes showed to be involved (i.e. oxidative stress, neurotoxicity, energy). Furthermore, UV effects showed to vary with the environment medium and growth-stage. A similar biomarker approach was employed to assess the single and joint effects of the pesticides chlorpyrifos and mancozeb to P. pruinosus. Energy-related biomarkers showed to be the most differentiating parameters since age-classes seemed to respond differently to contamination stress and to have different metabolic costs associated. Finally, the influence of temperature and soil moisture on the toxicity of pesticide mixtures was evaluated using survival and feeding parameters as endpoints. Pesticide-induced mortality was found to be oppositely affected by temperature, either in single or mixture treatments. Whereas chlorpyrifos acute toxicity was raised under higher temperatures the toxicity of mancozeb was more prominent at lower temperatures. By the opposite, soil moisture showed no effects on the pesticide-induced mortality of isopods. Contrary to survival, both temperature and soil moisture showed to interact with pesticides to influence isopods’ feeding parameters. Nonetheless, was however the most common pattern. In brief, findings reported on this thesis demonstrated why the negligence of natural stressors, or multiple stressors in general, is not a good solution for risk assessment frameworks.
Resumo:
The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.
Resumo:
Objectif: Évaluer l'efficacité du dépistage de l’hypertension gestationnelle par les caractéristiques démographiques maternelles, les biomarqueurs sériques et le Doppler de l'artère utérine au premier et au deuxième trimestre de grossesse. Élaborer des modèles prédictifs de l’hypertension gestationnelle fondées sur ces paramètres. Methods: Il s'agit d'une étude prospective de cohorte incluant 598 femmes nullipares. Le Doppler utérin a été étudié par échographie transabdominale entre 11 +0 à 13 +6 semaines (1er trimestre) et entre 17 +0 à 21 +6 semaines (2e trimestre). Tous les échantillons de sérum pour la mesure de plusieurs biomarqueurs placentaires ont été recueillis au 1er trimestre. Les caractéristiques démographiques maternelles ont été enregistrées en même temps. Des courbes ROC et les valeurs prédictives ont été utilisés pour analyser la puissance prédictive des paramètres ci-dessus. Différentes combinaisons et leurs modèles de régression logistique ont été également analysés. Résultats: Parmi 598 femmes, on a observé 20 pré-éclampsies (3,3%), 7 pré-éclampsies précoces (1,2%), 52 cas d’hypertension gestationnelle (8,7%) , 10 cas d’hypertension gestationnelle avant 37 semaines (1,7%). L’index de pulsatilité des artères utérines au 2e trimestre est le meilleur prédicteur. En analyse de régression logistique multivariée, la meilleure valeur prédictive au 1er et au 2e trimestre a été obtenue pour la prévision de la pré-éclampsie précoce. Le dépistage combiné a montré des résultats nettement meilleurs comparés avec les paramètres maternels ou Doppler seuls. Conclusion: Comme seul marqueur, le Doppler utérin du deuxième trimestre a la meilleure prédictive pour l'hypertension, la naissance prématurée et la restriction de croissance. La combinaison des caractéristiques démographiques maternelles, des biomarqueurs sériques maternels et du Doppler utérin améliore l'efficacité du dépistage, en particulier pour la pré-éclampsie nécessitant un accouchement prématuré.