936 resultados para Vector Space Model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AMS subject classification: 52A01, 13C99.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research on the adoption of innovations by individuals has been criticized for focusing on various factors that lead to the adoption or rejection of an innovation while ignoring important aspects of the dynamic process that takes place. Theoretical process-based models hypothesize that individuals go through consecutive stages of information gathering and decision making but do not clearly explain the mechanisms that cause an individual to leave one stage and enter the next one. Research on the dynamics of the adoption process have lacked a structurally formal and quantitative description of the process. ^ This dissertation addresses the adoption process of technological innovations from a Systems Theory perspective and assumes that individuals roam through different, not necessarily consecutive, states, determined by the levels of quantifiable state variables. It is proposed that different levels of these state variables determine the state in which potential adopters are. Various events that alter the levels of these variables can cause individuals to migrate into different states. ^ It was believed that Systems Theory could provide the required infrastructure to model the innovation adoption process, particularly applied to information technologies, in a formal, structured fashion. This dissertation assumed that an individual progressing through an adoption process could be considered a system, where the occurrence of different events affect the system's overall behavior and ultimately the adoption outcome. The research effort aimed at identifying the various states of such system and the significant events that could lead the system from one state to another. By mapping these attributes onto an “innovation adoption state space” the adoption process could be fully modeled and used to assess the status, history, and possible outcomes of a specific adoption process. ^ A group of Executive MBA students were observed as they adopted Internet-based technological innovations. The data collected were used to identify clusters in the values of the state variables and consequently define significant system states. Additionally, events were identified across the student sample that systematically moved the system from one state to another. The compilation of identified states and change-related events enabled the definition of an innovation adoption state-space model. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation examined the response to termination of CO2 enrichment of a forest ecosystem exposed to long-term elevated atmospheric CO2 condition, and aimed at investigating responses and their underlying mechanisms of two important factors of carbon cycle in the ecosystem, stomatal conductance and soil respiration. Because the contribution of understory vegetation to the entire ecosystem grew with time, we first investigated the effect of elevated CO2 on understory vegetation. Potential growth enhancing effect of elevated CO2 were not observed, and light seemed to be a limiting factor. Secondly, we examined the importance of aerodynamic conductance to determine canopy conductance, and found that its effect can be negligible. Responses of stomatal conductance and soil respiration were assessed using Bayesian state space model. In two years after the termination of CO2 enrichment, stomatal conductance in formerly elevated CO2 returned to ambient level, while soil respiration became smaller than ambient level and did not recovered to ambient in two years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.

As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dependency of word similarity in vector space models on the frequency of words has been noted in a few studies, but has received very little attention. We study the influence of word frequency in a set of 10 000 randomly selected word pairs for a number of different combinations of feature weighting schemes and similarity measures. We find that the similarity of word pairs for all methods, except for the one using singular value decomposition to reduce the dimensionality of the feature space, is determined to a large extent by the frequency of the words. In a binary classification task of pairs of synonyms and unrelated words we find that for all similarity measures the results can be improved when we correct for the frequency bias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este artículo presenta un resultado de investigación financiado con recursos propios en el que se expone un modelo en espacio de estados de un rectificador trifásico controlado active front end. Utilizando este modelo se deriva una ley de control orientado al voltaje (VOC), enfocado en el comportamiento como carga resistiva, factor de potencia unitario, el cual es probado mediante simulación usando el Toolbox SimPowerSystem en Simulink de Matlab®.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a vector autorregresive model (VAR) is applied to examine the interrelationship among foreign direct investment, exports, Gross Domestic Product (GDP), unemployment rate and labor force participation rate in Puerto Rico, taking into account a time period that includes the fiscal years from 1980 to 2010 -- Four cointegrating vectors were found in the system which indicates that there is a long run relationship between the variables -- The findings suggest that consecutive increases in foreign direct investment inflows could significantly reduce the unemployment rate and increase interest in joining the labor force in Puerto Rico -- The same result also applies to increases in export levels -- The variations in Gross Domestic Product are mainly explained in the long run by the unemployment rate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doutoramento em Gestão

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the efficiency of multivariate macroeconomic forecasts by estimating a vector autoregressive model on the forecast revisions of four variables (GDP, inflation, unemployment and wages). Using a data set of professional forecasts for the G7 countries, we find evidence of cross‐series revision dynamics. Specifically, forecasts revisions are conditionally correlated to the lagged forecast revisions of other macroeconomic variables, and the sign of the correlation is as predicted by conventional economic theory. This indicates that forecasters are slow to incorporate news across variables. We show that this finding can be explained by forecast underreaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following the seminal work of Zhuang, connected Hopf algebras of finite GK-dimension over algebraically closed fields of characteristic zero have been the subject of several recent papers. This thesis is concerned with continuing this line of research and promoting connected Hopf algebras as a natural, intricate and interesting class of algebras. We begin by discussing the theory of connected Hopf algebras which are either commutative or cocommutative, and then proceed to review the modern theory of arbitrary connected Hopf algebras of finite GK-dimension initiated by Zhuang. We next focus on the (left) coideal subalgebras of connected Hopf algebras of finite GK-dimension. They are shown to be deformations of commutative polynomial algebras. A number of homological properties follow immediately from this fact. Further properties are described, examples are considered and invariants are constructed. A connected Hopf algebra is said to be "primitively thick" if the difference between its GK-dimension and the vector-space dimension of its primitive space is precisely one . Building on the results of Wang, Zhang and Zhuang,, we describe a method of constructing such a Hopf algebra, and as a result obtain a host of new examples of such objects. Moreover, we prove that such a Hopf algebra can never be isomorphic to the enveloping algebra of a semisimple Lie algebra, nor can a semisimple Lie algebra appear as its primitive space. It has been asked in the literature whether connected Hopf algebras of finite GK-dimension are always isomorphic as algebras to enveloping algebras of Lie algebras. We provide a negative answer to this question by constructing a counterexample of GK-dimension 5. Substantial progress was made in determining the order of the antipode of a finite dimensional pointed Hopf algebra by Taft and Wilson in the 1970s. Our final main result is to show that the proof of their result can be generalised to give an analogous result for arbitrary pointed Hopf algebras.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.