Stochastic Search Variable Selection in Vector Error Correction Models with an Application to a Model of the UK Macroeconomy


Autoria(s): Jochmann, Markus; Koop, Gary; Leon-Gonzalez, Roberto; Strachan, Rodney W.
Data(s)

02/03/2012

02/03/2012

2009

Resumo

This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.

Identificador

http://hdl.handle.net/10943/89

Publicador

University of Strathclyde

Roberto National Graduate Institute for Policy Studies

Relação

SIRE DISCUSSION PAPERS;SIRE-DP-2009-44

Palavras-Chave #Bayesian #cointegration #model averaging #model selection #Markov chain Monte Carlo
Tipo

Working Paper