618 resultados para Morbus Fabry
Resumo:
报道了利用Si基键合技术和化学机械抛光工艺制作的垂直结构的Fabry-Perot可调谐滤波器,调谐机理为pn结正向注入电流引起的热光效应。调谐范围可达23nm,响应时间约为300 μs,并给出了获得更快响应和更低能耗的热光和电注入可调谐滤波器件结构改进方案。
Resumo:
The design and fabrication of 1550 nm semiconductor optical amplifiers (SOAs) and the characteristics of the fabricated SOA are reported. A novel gain measurement technique based on the integrations of the product of emission spectrum and a phase function over one mode interval is proposed for Fabry-Perot semiconductor lasers.
Resumo:
In this paper we report the fabrication of 1.3 mum Si-based MEMS tunable optical filter, by surface micromaching. Through wet etching of polyimide sacrificial layer, a tunable Fabry-Perot filter was successfully fabricated. We make the capacitance measurement of the prototype device, compare the experimental curve with the theoretical one, and explain the difference between them.
Resumo:
We analyze the mode behaviors for semiconductor lasers with an equilateral triangle resonator by deriving the mode field distribution and the eigenvalue equation. The eigenvalue equation shows that the longitudinal mode wavelength interval is equivalent to that of a Fabry-Perot cavity with the cavity length of 1.5a, where a is the side length of the equilateral triangle resonator. The transverse waveguiding is equivalent to as a strip waveguide with the width of root 3a/ 2, and the number of transverse modes supported by the resonator is limited by the total reflection condition on the sides of the equilateral triangle. Semiconductor microcavity laser with an equilateral triangle resonator is suitable to realize single mode operation, and the mode wavelength can be adjusted by changing the side length.
Resumo:
We fabricate 1.5 mu m InGaAsP/InP tunnel injection multiple-quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are grown by metal-organic chemical-vapor deposition (MOCVD). Characteristic temperature.. 0 of 160K at 20 degrees C is obtained for 500-mu m-long lasers. T-0 is measured as high as 88K in the temperature range of 15-75 degrees C. Cavity length dependence of T-0 is investigated.
Resumo:
Neutral winds and electric fields in the ionospheric F layer play important roles in the variations of the ionosphere, and also affect the thermospheric circulation via the close coupling between the ionosphere and the thermosphere. By now, the neutral winds and electric drifts are generally observed with ground-based Fabry-Perot interferometers (FPI) and incoherent scatter radars (ISR), rockets, and satellite-borne instrument. Based on the servo theory, the ionospheric equivalent winds, which include the information of both the neutral winds and electric fields, can be derived from these characteristic parameters observed by ionosondes. This indirect derivation has potential values in climatological researches and space weather forecast. With the data set of the incoherent scatter radar observations at Millstone Hill, USA, from 1976 to 2006, we statistically analyzed the climatological variations of the vertical component of the equivalent winds (VEWs) over Millstone Hill, which are derived from the ionospheric key parameters (the peak electron number density and peak height of the F2 layer, NmF2 and hmF2) on the basis of the servo theory, Liu's method, and measurements from the ion line-of-sight velocity as well. The main results of this analysis are summarized as follows: (1) The values of VEWs over Millstone Hill during nighttime are stronger than in the daytime, and the upward drift dominates most of the day. In 1993, Hagan found that the component of the neutral winds in the magnetic meridion in daytime is weaker than during nighttime under both solar maximum and minimum conditions; he also found that the equatorward winds dominate most of the day. Both results suggest that the thermosphere in Millstone Hill is modulated by the aurorally driven high-latitude circulation cell; that is, during geomagnetic quiet periods, the average auroral activity is strong enough to drive thermospheric circulation equatorward for most of the day at Millstone Hill. Moreover, since ion drag is the strongest during daytime when F region densities are enhanced by photoionization, the wind speeds are smaller during the daytime than in the nighttime. (2) There is equinoctial symmetry in VEWs at Millstone Hill. The amplitudes and phases of VEWs in spring are quite similar to those in autumn. In contrast, the nighttime upward drift in winter is weaker than in summer and the difference becomes more significant with increasing solar activity. This solstice asymmetry indicates that, the aurorally driven circulation in the northern hemisphere at Millstone Hill latitude is weaker in winter due to arctic darkness, because the subsolar point is in the southern hemisphere. (3) The comparison of the VEWs derived from three methods, i.e., the servo theory, Liu's method, and the ISR ion line-of-sight velocity measurements, indicates that the amplitudes and main phase tendencies of these VEWs accord well with each other during nighttime hours. However, the case in the daytime is relatively worse. This daytime discrepancy can be explained in terms of the effects of photochemical processes and the choices of the servo constants. A larger servo constant gives a stronger plasma drift in daytime. Therefore, this study tells how important to choose a suitable constant for deriving VEWs at Millstone Hill.
Resumo:
This thesis covers both the packaging of silicon photonic devices with fiber inputs and outputs as well as the integration of laser light sources with these same devices. The principal challenge in both of these pursuits is coupling light into the submicrometer waveguides that are the hallmark of silicon-on-insulator (SOI) systems. Previous work on grating couplers is leveraged to design new approaches to bridge the gap between the highly-integrated domain of silicon, the Interconnected world of fiber and the active region of III-V materials. First, a novel process for the planar packaging of grating couplers with fibers is explored in detail. This technology allows the creation of easy-to-use test platforms for laser integration and also stands on its own merits as an enabling technology for next-generation silicon photonics systems. The alignment tolerances of this process are shown to be well-suited to a passive alignment process and for wafer-scale assembly. Furthermore, this technology has already been used to package demonstrators for research partners and is included in the offerings of the ePIXfab silicon photonics foundry and as a design kit for PhoeniX Software’s MaskEngineer product. After this, a process for hybridly integrating a discrete edge-emitting laser with a silicon photonic circuit using near-vertical coupling is developed and characterized. The details of the various steps of the design process are given, including mechanical, thermal, optical and electrical steps. The interrelation of these design domains is also discussed. The construction process for a demonstrator is outlined, and measurements are presented of a series of single-wavelength Fabry-Pérot lasers along with a two-section laser tunable in the telecommunications C-band. The suitability and potential of this technology for mass manufacture is demonstrated, with further opportunities for improvement detailed and discussed in the conclusion.
Resumo:
Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals.
Resumo:
We consider the dynamics of a movable mirror in a Fabry-Perot cavity coupled through radiation pressure to the cavity field and in contact with a thermal bath at finite temperature. In contrast to previous approaches, we consider arbitrary values of the effective detuning between the cavity and an external input field. We analyse the radiation-pressure effect on the Brownian motion of the mirror and its significance in the density noise spectrum of the output cavity field. Important properties of the mirror dynamics can be gathered directly from this noise spectrum. The presented reconstruction provides an experimentally useful tool in the characterization of the energy and rigidity of the mirror as modified by the coupling with light. We also give a quantitative analysis of the recent experimental observation of self-cooling of a micromechanical oscillator.
Resumo:
A wineglass has been used as an acoustic resonator to enhance the photoacoustic signal generated by laser excitation of absorbing dyes in solution. The amplitude of the acoustic signal was recorded using a fiber-optic transducer based on a Fabry-Pérot cavity attached to the rim of the wineglass. The optical and acoustic properties of the setup were characterized, and it was used to quantify the concentration of phosphomolybdenum blue and methyl red solutions. Detection limits of 1.2 ppm and 8 muM were obtained, respectively.
Resumo:
In this report we give a summary of our work on the development of low-noise fiber-optic strain sensors. Three types of strain sensors were developed and were tested by attaching them to the bodies of acoustic guitars. The fibers are strained as the soundboards of the guitars vibrate. The resulting spectral shift of either a Fiber Bragg Grating or a fiber Fabry-Perot cavity is then used to record the sound of the instrument.
Resumo:
A fast and accurate analysis and synthesis technique for high-gain sub-wavelength 2-D Fabry-Perot leaky-wave antennas (LWA) consisting of two periodic metallodielectric arrays over a ground plane is presented. Full-wave method of moments (MoM) together with reciprocity is employed for the estimation of the near fields upon plane wave illumination and the extraction of the radiation patterns of the LWA. This yields a fast and rigorous tool for the characterisation of this type of antennas. A thorough convergence study for different antenna designs is presented and the operation principles of these antennas as well as the radiation characteristics are discussed. Moreover, design guidelines to tailor the antenna profile, the dimensions of the arrays as well as the antenna directivity and bandwidth are provided. A study on the radiation efficiency for antennas with different profiles is also presented and the trade off between directivity and radiation bandwidth is discussed. Numerical examples are given throughout to demonstrate the technique. A finite size antenna model is simulated using commercial software (CST Microstripes 2009) which validates the technique.