909 resultados para ultra high-power laser diode arrays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel ultra low power temperature sensor for UHF RFID tag chip is presented. The sensor consists of a constant pulse generator, a temperature related oscillator, a counter and a bias. Conversion of temperature to digital output is fulfilled by counting the number of the clocks of the temperature related oscillator in a constant pulse period. The sensor uses time domain comparing, where high power consumption bandgap voltage references and traditional ADCs are not needed. The sensor is realized in a standard 0.18 mu m CMOS process, and the area is only 0.2mm(2). The accuracy of the temperature sensor is +/- 1 degrees C after calibration. The power consumption of the sensor is only 0.9 mu W.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an embedded ultra low power nonvolatile memory in a standard CMOS logic process. The memory adopts a bit cell based on the differential floating gate PMOS structure and a novel operating scheme. It can greatly improve the endurance and retention characteristic and make the area/bit smaller. A new high efficiency all-PMOS charge pump is designed to reduce the power consumption and to increase the power efficiency. It eliminates the body effect and can generate higher output voltage than conventional structures for a same stage number. A 32-bit prototype chip is fabricated in a 0.18 mu m 1P4M standard CMOS logic process and the core area is 0.06 mm(2). The measured results indicate that the typical write/erase time is 10ms. With a 700 kHz clock frequency, power consumption of the whole memory is 2.3 mu A for program and 1.2 mu A for read at a 1.6V power supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power strain-compensated In1-xGaxAs/ln(1-y)Al(y)As quantum cascade lasers (lambda similar to 5.5 mu m) are demonstrated. Peak power at least 1.2W per facet for a 32 mu mx2mm uncoated laser stored in ambient condition for 240 days, is obtained at 80 K. Considering the collection efficiency of 60%, the actual output power is 4W at this temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched mode-locking (QML) in low power pumped solid-state lasers. A simple Nd:YVO4 laser pumped by low power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cladding-pumped ytterbium-doped fiber laser is described in this letter. Using unusual pumping source with 915-nm wavelength, slope efficiency up to 75% with respect to absorbed input power and output power is obtained, a maximum output power of 4.006 W with fundamental mode is measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel 1.55μm laser diode with spot-size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double-core structure is employed.For the spot-size converter,a buried ridge double-core structure is incorporated.The laterally tapered active core is designed and optically combined with the thin and wide passive core to control the size of mode.The laser diode threshold current is measured to be 40mA together with high slop efficiency of 0.35W/A.The beam divergence angles in the horizontal and vertical directions are as small as 14.89°×18.18°,respectively,resulting in low-coupling losses with a cleaved optical fiber (3dB loss).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A short overview of laser-plasma acceleration of ions is presented. The focus is on some recent experimental results and the related theoretical work on advanced regimes. These latter include in particular target normal sheath acceleration using ultrashort low-energy pulses and structured targets, radiation pressure acceleration in both thick and ultrathin targets and collisionless shock acceleration in moderate density plasmas. For each approach, open issues and the need and potential for further developments are briefly discussed. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information display technology is a rapidly growing research and development field. Using state-of-the-art technology, optical resolution can be increased dramatically by organic light-emitting diode - since the light emitting layer is very thin, under 100nm. The main question is what pixel size is achievable technologically? The next generation of display will considers three-dimensional image display. In 2D , one is considering vertical and horizontal resolutions. In 3D or holographic images, there is another dimension – depth. The major requirement is the high resolution horizontal dimension in order to sustain the third dimension using special lenticular glass or barrier masks, separate views for each eye. The high-resolution 3D display offers hundreds of more different views of objects or landscape. OLEDs have potential to be a key technology for information displays in the future. The display technology presented in this work promises to bring into use bright colour 3D flat panel displays in a unique way. Unlike the conventional TFT matrix, OLED displays have constant brightness and colour, independent from the viewing angle i.e. the observer's position in front of the screen. A sandwich (just 0.1 micron thick) of organic thin films between two conductors makes an OLE Display device. These special materials are named electroluminescent organic semi-conductors (or organic photoconductors (OPC )). When electrical current is applied, a bright light is emitted (electrophosphorescence) from the formed Organic Light-Emitting Diode. Usually for OLED an ITO layer is used as a transparent electrode. Such types of displays were the first for volume manufacture and only a few products are available in the market at present. The key challenges that OLED technology faces in the application areas are: producing high-quality white light achieving low manufacturing costs increasing efficiency and lifetime at high brightness. Looking towards the future, by combining OLED with specially constructed surface lenses and proper image management software it will be possible to achieve 3D images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). Under optimized conditions, excellent linearity View the MathML source(Rvalues2>0.9963), limits of detection of 0.006 μg mL−1 (quercetin) to 0.013 μg mL−1 (myricetin) and precision within 0.5–3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0–97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8 ± 3.7 μg mL−1). Quercetin (0.97 ± 0.41 μg mL−1) and kaempferol (0.66 ± 0.24 μg mL−1) were found in a lower concentration. The optimized MEPSC8 method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPSC8 approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9 ± 0.9% to 92.1 ± 0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript describes the development and validation of an ultra-fast, efficient, and high throughput analytical method based on ultra-high performance liquid chromatography (UHPLC) equipped with a photodiode array (PDA) detection system, for the simultaneous analysis of fifteen bioactive metabolites: gallic acid, protocatechuic acid, (−)-catechin, gentisic acid, (−)-epicatechin, syringic acid, p-coumaric acid, ferulic acid, m-coumaric acid, rutin, trans-resveratrol, myricetin, quercetin, cinnamic acid and kaempferol, in wines. A 50-mm column packed with 1.7-μm particles operating at elevated pressure (UHPLC strategy) was selected to attain ultra-fast analysis and highly efficient separations. In order to reduce the complexity of wine extract and improve the recovery efficiency, a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a new macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis™ HLB), was performed prior to UHPLC–PDA analysis. The calibration curves of bioactive metabolites showed good linearity within the established range. Limits of detection (LOD) and quantification (LOQ) ranged from 0.006 μg mL−1 to 0.58 μg mL−1, and from 0.019 μg mL−1 to 1.94 μg mL−1, for gallic and gentisic acids, respectively. The average recoveries ± SD for the three levels of concentration tested (n = 9) in red and white wines were, respectively, 89 ± 3% and 90 ± 2%. The repeatability expressed as relative standard deviation (RSD) was below 10% for all the metabolites assayed. The validated method was then applied to red and white wines from different geographical origins (Azores, Canary and Madeira Islands). The most abundant component in the analysed red wines was (−)-epicatechin followed by (−)-catechin and rutin, whereas in white wines syringic and p-coumaric acids were found the major phenolic metabolites. The method was completely validated, providing a sensitive analysis for bioactive phenolic metabolites detection and showing satisfactory data for all the parameters tested. Moreover, was revealed as an ultra-fast approach allowing the separation of the fifteen bioactive metabolites investigated with high resolution power within 5 min.