911 resultados para tree species richness and composition
Resumo:
For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.
Resumo:
Environmental acoustic recordings can be used to perform avian species richness surveys, whereby a trained ornithologist can observe the species present by listening to the recording. This could be made more efficient by using computational methods for iteratively selecting the richest parts of a long recording for the human observer to listen to, a process known as “smart sampling”. This allows scaling up to much larger ecological datasets. In this paper we explore computational approaches based on information and diversity of selected samples. We propose to use an event detection algorithm to estimate the amount of information present in each sample. We further propose to cluster the detected events for a better estimate of this amount of information. Additionally, we present a time dispersal approach to estimating diversity between iteratively selected samples. Combinations of approaches were evaluated on seven 24-hour recordings that have been manually labeled by bird watchers. The results show that on average all the methods we have explored would allow annotators to observe more new species in fewer minutes compared to a baseline of random sampling at dawn.
Resumo:
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
Resumo:
Bird species richness survey is one of the most intriguing ecological topics for evaluating environmental health. Here, bird species richness denotes the number of unique bird species in a particular area. Factors affecting the investigation of bird species richness include weather, observation bias, and most importantly, the prohibitive costs of conducting surveys at large spatiotemporal scales. Thanks to advances in recording techniques, these problems have been alleviated by deploying sensors for acoustic data collection. Although automated detection techniques have been introduced to identify various bird species, the innate complexity of bird vocalizations, the background noise present in the recording and the escalating volumes of acoustic data pose a challenging task on determination of bird species richness. In this paper we proposed a two-step computer-assisted sampling approach for determining bird species richness in one-day acoustic data. First, a classification model is built based on acoustic indices for filtering out minutes that contain few bird species. Then the classified bird minutes are ordered by an acoustic index and the redundant temporal minutes are removed from the ranked minute sequence. The experimental results show that our method is more efficient in directing experts for determination of bird species compared with the previous methods.
Resumo:
Trials to identify alternative cropping options to Melaleuca alternifolia for northern Queensland essential oil growers were established at Dimbulah and Innot Hot Springs in 2001. Seed sources of Asteromyrtus symphyocarpa (1,8-cineole form), Eucalyptus staigeriana (citral), Melaleuca cajuputi subsp. cajuputi (trans-nerolidol), M. ericifolia (d-linalool), M. quinquenervia (trans-nerolidol and viridiflorol forms) and M. viridiflora (methyl cinnamate) with potential to produce commercial foliar oils were evaluated. Information was gathered on their adaptability, growth and oil yields over 49 months and 52 months (two harvests) from planting at Dimbulah and Innot Hot Springs, respectively. Of the species and chemotypes evaluated, M. quinquenervia showed potential for commercial production of trans-nerolidol, a compound used in perfumery. It had a very high survival rate (96%) and yields could be expected to improve dramatically from the average 100 kg/ha per harvest achieved in these trials with further research into selection of seed source, control of insect damage and breeding for genetic improvement. M. cajuputi subsp. cajuputi gave a similar performance to M. quinquenervia. The rarity of the trans-nerolidol form of this species and remoteness of its natural occurrence are impediments to further planting and research. E. staigeriana, with second harvest yields of ~600 kg/ha, performed exceptionally well on both sites but potential for development is limited by the ready availability of competitively priced E. staigeriana oil produced in South America. Survival of M. ericifolia ranged from 62% to 82% at 32 months (second harvest) at Innot Hot Springs and was deemed a failure at Dimbulah with poor growth and low survival, raising a major question about the suitability of this species for cultivation in the seasonally dry tropics. Planting of this species on a wider scale in northern Queensland cannot be recommended until more is known about factors affecting its survival. A. symphyocarpa and M. viridiflora were too slow-growing to warrant further consideration as potential oil-producing species at this time.
Resumo:
The issue of the usefulness of different prosopis species versus their status as weeds is a matter of hot debate around the world. The tree Prosopis juliflora had until 2000 been proclaimed weedy in its native range in South America and elsewhere in the dry tropics. P. juliflora or mesquite has a 90-year history in Sudan. During the early 1990s a popular opinion in central Sudan and the Sudanese Government had begun to consider prosopis a noxious weed and a problematic tree species due to its aggressive ability to invade farmlands and pastures, especially in and around irrigated agricultural lands. As a consequence prosopis was officially declared an invasive alien species also in Sudan, and in 1995 a presidential decree for its eradication was issued. Using a total economic valuation (TEV) approach, this study analysed the impacts of prosopis on the local livelihoods in two contrasting irrigated agricultural schemes. Primarily a problem-based approach was used in which the derivation of non-market values was captured using ecological economic tools. In the New Halfa Irrigation Scheme in Kassala State, four separate household surveys were conducted due to diversity between the respective population groups. The main aim was here to study the magnitude of environmental economic benefits and costs derived from the invasion of prosopis in a large agricultural irrigation scheme on clay soil. Another study site, the Gandato Irrigation Scheme in River Nile State represented impacts from prosopis that an irrigation scheme was confronted with on sandy soil in the arid and semi-arid ecozones along the main River Nile. The two cases showed distinctly different effects of prosopis but both indicated the benefits to exceed the costs. The valuation on clay soil in New Halfa identified a benefit/cost ratio of 2.1, while this indicator equalled 46 on the sandy soils of Gandato. The valuation results were site-specific and based on local market prices. The most important beneficial impacts of prosopis on local livelihoods were derived from free-grazing forage for livestock, environmental conservation of the native vegetation, wood and non-wood forest products, as well as shelterbelt effects. The main social costs from prosopis were derived from weeding and clearing it from farm lands and from canalsides, from thorn injuries to humans and livestock, as well as from repair expenses vehicle tyre punctures. Of the population groups, the tenants faced most of the detrimental impacts, while the landless population groups (originating from western and eastern Sudan) as well as the nomads were highly dependent on this tree resource. For the Gandato site the monetized benefit-cost ratio of 46 still excluded several additional beneficial impacts of prosopis in the area that were difficult to quantify and monetize credibly. In River Nile State the beneficial impact could thus be seen as completely outweighing the costs of prosopis. The results can contributed to the formulation of national and local forest and agricultural policies related to prosopis in Sudan and also be used in other countries faced with similar impacts caused by this tree.
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
We investigated the effects of annual burning since 1952, triennial burning since 1973, fire exclusion since 1946 and infrequent wildfire (one fire in 61 years) on woody understorey vegetation in a dry sclerophyll eucalypt forest, south-eastern Queensland, Australia. We determined the influence of these treatments, and other site variables (rainfall, understorey density, topsoil C : N ratio, tree basal area, distance to watercourse and burn coverage) on plant taxa density, richness and composition. The richness of woody understorey taxa 0–1 m in height was not affected by burning treatments, but richness of woody plants 1–7.5 m in height was lower in the annually burnt treatment than in the triennially burnt treatment from 1989 to 2007. Fire frequency and other site variables explained 34% of the variation in taxa composition (three taxon groups and 10 species), of which 33% of the explained variance was explained by fire treatment and 46% was explained by other site variables. Annual burning between 1974 and 1993 was associated with lower understorey densities mainly due to reduced densities of eucalypts 1–7.5 m in height. Triennial burning during the same period was associated with higher densities of eucalypts 0–7.5 m in height relative to the annually burnt and unburnt treatments. Most woody taxa persisted in the frequently burnt treatments through resprouting mechanisms (e.g. lignotuberous regeneration), and fire patchiness associated with low-intensity burning was also found to be important. Persistence of plants <1 m tall demonstrates the resilience of woody taxa to repeated burning in this ecosystem, although they mainly exist in a suppressed growth state under annual burning.
Resumo:
Hornbills are important dispersers of a wide range of tree species. Many of these species bear fruits with large, lipid-rich seeds that could attract terrestrial rodents. Rodents have multiple effects on seed fates, many of which remain poorly understood in the Palaeotropics. The role of terrestrial rodents was investigated by tracking seed fate of five horn bill-dispersed tree species in a tropical forest in north-cast India. Seeds were marked inside and outside of exclosures below 6-12 parent fruiting trees (undispersed seed rain) and six hornbill nest trees (a post-dispersal site). Rodent visitors and seed removal ere monitored using camera traps. Our findings suggest that several rodent species. especially two species of porcupine were major on-site seed predators. Scatter-hoarding was rare (1.4%). Seeds at hornbill nest trees had lower survival compared with parent fruiting trees, indicating that clumped dispersal by hornbills may not necessarily improve seed survival. Seed survival in the presence and absence of rodents varied with tree species. Some species (e.g. Polyalthia simiarum) showed no difference, others (e.g. Dysoxylum binectariferum) experienced up to a 64%. decrease in survival in the presence of rodents. The differing magnitude of seed predation by rodents can have significant consequences at the seed establishment stage.
Resumo:
Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.
Resumo:
The composition of the carnivore community influences the different forms of inter-specific interactions. Furthermore, inter-specific interactions of carnivores have important implications for intra-guild competition, epidemiology and strategies of species-specific population management. Zoonooses, such as rabies, are diseases that can be transmitted from wildlife to people. Knowing the ecological characteristics of the species helps us to choose the right preventive actions and to time them accurately. In this thesis, I have studied how raccoon dogs Nyctereutes procyonoides, European badgers Meles meles, red foxes Vulpes vulpes and domestic cats Felis silvestris catus act as members of carnivore community, and how these interactions relate to the transmission risk of rabies. In the study area, these species form a community of medium-sized and rather generalist predators. They live in the same areas, in spatially and temporally overlapping home ranges and use the same habitats and dens and even have similar diets. However, there is no direct evidence of competition. Shared dens point to good tolerance of other species. Numerous observations of animals moving in each other’s proximity give similar clues. However, overlapping home ranges and similar habitat preferences lead to frequent inter-specific contacts, which increase the risk of possible rabies transmission. Also, the new insight of habitat use gained by this study illustrates the similar favouring of deciduous forests and fields by these sympatric medium-sized carnivores, creating a basis for contact zones, i.e. risky habitats for rabies transmission and spread. This study is so far the only simultaneous radio tracking study of raccoon dogs, badgers, foxes and cats. These results give new insight of the interactions in the carnivore community, as well as of the behaviour of each individual species. Also, these results have significant implications for the planning of rabies control. In order to reach viable management decisions, not only one or two species should be taken into consideration, but the whole community. In particular, this changes the perspective to inter-specific contacts, animal densities, densities of individuals susceptible to diseases and the magnitude of preventive actions. Rabies should be considered as a multi-vector disease, at least in Finland and the Baltic states. It is of interest for disease management to be able to model an epizootic with local parameters to reflect the real situation and also to suite best the local management needs.
Resumo:
The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.
Resumo:
This work focuses on the factors affecting species richness, abundance and species composition of butterflies and moths in Finnish semi-natural grasslands, with a special interest in the effects of grazing management. In addition, an aim was set at evaluating the effectiveness of the support for livestock grazing in semi-natural grasslands, which is included in the Finnish agri-environment scheme. In the first field study, butterfly and moth communities in resumed semi-natural pastures were com-pared to old, annually grazed and abandoned previous pastures. Butterfly and moth species compo-sition in restored pastures resembled the compositions observed in old pastures after circa five years of resumed cattle grazing, but diversity of butterflies and moths in resumed pastures remained at a lower level compared with old pastures. None of the butterfly and moth species typical of old pas-tures had become more abundant in restored pastures compared with abandoned pastures. There-fore, it appears that restoration of butterfly and moth communities inhabiting semi-natural grass-lands requires a longer time that was available for monitoring in this study. In the second study, it was shown that local habitat quality has the largest impact on the occurrence and abundance of butterflies and moths compared to the effects of grassland patch area and connec-tivity of the regional grassland network. This emphasizes the importance of current and historical management of semi-natural grasslands on butterfly and moth communities. A positive effect of habitat connectivity was observed on total abundance of the declining butterflies and moths, sug-gesting that these species have strongest populations in well-connected habitat networks. Highest species richness and peak abundance of most individual species of butterflies and moths were generally observed in taller grassland vegetation compared with vascular plants, suggesting a preference towards less intensive management in insects. These differences between plants and their insect herbivores may be understood in the light of both (1) the higher structural diversity of tall vegetation and (2) weaker tolerance of disturbances by herbivorous insects due to their higher trophic level compared to plants. The ecological requirements of all species and species groups inhabiting semi-natural grasslands are probably never met at single restricted sites. Therefore, regional implementation of management to create differently managed areas is imperative for the conservation of different species and species groups dependent on semi-natural grasslands. With limited resources it might be reasonable to focus much of the management efforts in the densest networks of suitable habitat to minimise the risk of extinction of the declining species.
Resumo:
Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.