920 resultados para WHITE-MATTER INTEGRITY
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
A pesar del amplio uso de la resonancia magnética en la esclerosis múltiple no se ha logrado una adecuada correlación clínico-imagenológica en esta enfermedad. Objetivo: Determinar la correlación del volumen normalizado de sustancia gris y del volumen de lesiones hipointensas en T1 obtenidos a partir de la resonancia magnética cerebral con la escala de discapacidad extendida en pacientes con diagnóstico de esclerosis múltiple. Materiales y métodos: Estudio retrospectivo en pacientes con diagnóstico de esclerosis múltiple de la Fundación Cardioinfantil. Se obtuvieron los resultados de la escala de discapacidad expandida así como análisis cuantitativo de las imágenes correspondientes de resonancia magnética por medio de la herramienta SIENA. Se cuantificaron el volumen del parénquima cerebral, sustancia gris, sustancia blanca y volumen de lesiones hipointensas en T1. Posteriormente, se relacionaron estos resultados con la escala de discapacidad extendida de Kurtzke previamente obtenida. Para el análisis estadístico se emplearon el test correlación de Spearman y t de Student y Hotelling. Resultados: Se incluyeron 58 pacientes, encontrándose correlaciones estadísticamente significativas entre la escala de discapacidad extendida y volumen de parénquima cerebral, volumen de sustancia gris y volumen de lesiones hipointensas en T1; de 0.384, 0.386 y 0.39. No se encontró una relación entre el volumen de sustancia blanca y la escala de discapacidad. Conclusiones: Existe una correlación clínico-imagenológica moderada en la esclerosis múltiple. La cuantificación de los parámetros propuestos en este estudio podría ser utilizada como herramienta en el seguimiento de la enfermedad y monitorización de nuevos tratamientos.
Resumo:
El Glioblastoma multiforme (GBM), es el tumor cerebral más frecuente, con pronóstico grave y baja sensibilidad al tratamiento inicial. El propósito de este estudio fue evaluar si la Difusión en RM (IDRM), es un biomarcador temprano de respuesta tumoral, útil para tomar decisiones tempranas de tratamiento y para obtener información pronostica. Metodología La búsqueda se realizo en las bases de datos EMBASE, CENTRAL, MEDLINE; las bibliografías también fueron revisadas. Los artículos seleccionados fueron estudios observacionales (casos y controles, cohortes, corte transversal), no se encontró ningún ensayo clínico; todos los participante tenían diagnostico histopatológico de GBM, sometidos a resección quirúrgica y/o radio-quimioterapia y seguimiento de respuesta al tratamiento con IDRM por al menos 6 meses. Los datos extraídos de forma independiente fueron tipo de estudio, participantes, intervenciones, seguimiento, desenlaces (sobrevida, progresión/estabilización de la enfermedad, muerte) Resultados Quince estudios cumplieron los criterios de inclusión. Entre las técnicas empleadas de IDRM para evaluar respuesta radiológica al tratamiento, fueron histogramas del coeficiente aparente de difusion ADC (compararon valores inferiores a la media y el percentil 10 de ADC, con los valores superiores); encontrando en términos generales que un ADC bajo es un fuerte predictor de sobrevida y/o progresión del tumor. (Esto fue significativo en 5 estudios); mapas funcionales de difusion (FDM) (midieron el porcentaje de cambio de ADC basal vs pos tratamiento) que mostro ser un fuerte predictor de sobrevida en pacientes con progresión tumoral. DISCUSION Desafortunadamente la calidad de los estudios fue intermedia-baja lo que hace que la aplicabilidad de los estudios sea limitada.
Resumo:
El trastorno de hiperactividad y déficit de atención (THDA), es definido clínicamente como una alteración en el comportamiento, caracterizada por inatención, hiperactividad e impulsividad. Estos aspectos son clasificados en tres subtipos, que son: Inatento, hiperactivo impulsivo y mixto. Clínicamente se describe un espectro amplio que incluye desordenes académicos, trastornos de aprendizaje, déficit cognitivo, trastornos de conducta, personalidad antisocial, pobres relaciones interpersonales y aumento de la ansiedad, que pueden continuar hasta la adultez. A nivel global se ha estimado una prevalencia entre el 1% y el 22%, con amplias variaciones, dadas por la edad, procedencia y características sociales. En Colombia, se han realizado estudios en Bogotá y Antioquia, que han permitido establecer una prevalencia del 5% y 15%, respectivamente. La causa específica no ha sido totalmente esclarecida, sin embargo se ha calculado una heredabilidad cercana al 80% en algunas poblaciones, demostrando el papel fundamental de la genética en la etiología de la enfermedad. Los factores genéticos involucrados se relacionan con cambios neuroquímicos de los sistemas dopaminérgicos, serotoninérgicos y noradrenérgicos, particularmente en los sistemas frontales subcorticales, corteza cerebral prefrontal, en las regiones ventral, medial, dorsolateral y la porción anterior del cíngulo. Basados en los datos de estudios previos que sugieren una herencia poligénica multifactorial, se han realizado esfuerzos continuos en la búsqueda de genes candidatos, a través de diferentes estrategias. Particularmente los receptores Alfa 2 adrenérgicos, se encuentran en la corteza cerebral, cumpliendo funciones de asociación, memoria y es el sitio de acción de fármacos utilizados comúnmente en el tratamiento de este trastorno, siendo esta la principal evidencia de la asociación de este receptor con el desarrollo del THDA. Hasta la fecha se han descrito más de 80 polimorfismos en el gen (ADRA2A), algunos de los cuales se han asociado con la entidad. Sin embargo, los resultados son controversiales y varían según la metodología diagnóstica empleada y la población estudiada, antecedentes y comorbilidades. Este trabajo pretende establecer si las variaciones en la secuencia codificante del gen ADRA2A, podrían relacionarse con el fenotipo del Trastorno de Hiperactividad y el Déficit de Atención.
Resumo:
INTRODUCCIÓN: El 80% de los niños y adolescentes con trastornos del espectro autista (TEA) presenta algún trastorno del sueño, en cuya génesis al parecer intervienen alteraciones en la regulación de la melatonina. El objetivo de este metaanálisis fue determinar la eficacia y seguridad de la melatonina para el manejo de ciertos trastornos del sueño en niños con TEA. MÉTODOS: Tres revisores extrajeron los datos relevantes de los ensayos clínicos aleatorizados doble ciego de alta calidad publicados en bases de datos primarias, de ensayos clínicos, de revisiones sistemáticas y de literatura gris; además se realizó búsqueda en bola de nieve. Se analizaron los datos con RevMan 5.3. Se realizó un análisis del inverso de la varianza por un modelo de efectos aleatorios para las diferencias de medias de los desenlaces propuestos: duración del tiempo total, latencia de sueño y número de despertares nocturnos. Se evaluó la heterogeneidad interestudios con el parámetro I2 RESULTADOS: La búsqueda inicial arrojó 355 resultados, de los cuales tres cumplieron los criterios de selección. La melatonina resultó ser un medicamento seguro y eficaz para aumentar la duración total del sueño y disminuir la latencia de sueño en niños y adolescentes con TEA; hasta el momento la evidencia sobre el número de despertares nocturnos no es estadísticamente significativa. DISCUSIÓN: A la luz de la evidencia disponible, la melatonina es una elección segura y eficaz para el manejo de ciertos problemas del sueño en niños y adolescentes con TEA. Es necesario realizar estudios con mayores tamaños muestrales y comparados con otros medicamentos disponibles en el mercado.
Resumo:
Diffusion Tensor Imaging (DTI) is a new magnetic resonance imaging modality capable of producing quantitative maps of microscopic natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. This technique has become a powerful tool in the investigation of brain structure and function because it allows for in vivo measurements of white matter fiber orientation. The application of DTI in clinical practice requires specialized processing and visualization techniques to extract and represent acquired information in a comprehensible manner. Tracking techniques are used to infer patterns of continuity in the brain by following in a step-wise mode the path of a set of particles dropped into a vector field. In this way, white matter fiber maps can be obtained.
Resumo:
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Resumo:
One of the most pervasive assumptions about human brain evolution is that it involved relative enlargement of the frontal lobes. We show that this assumption is without foundation. Analysis of five independent data sets using correctly scaled measures and phylogenetic methods reveals that the size of human frontal lobes, and of specific frontal regions, is as expected relative to the size of other brain structures. Recent claims for relative enlargement of human frontal white matter volume, and for relative enlargement shared by all great apes, seem to be mistaken. Furthermore, using a recently developed method for detecting shifts in evolutionary rates, we find that the rate of change in relative frontal cortex volume along the phylogenetic branch leading to humans was unremarkable and that other branches showed significantly faster rates of change. Although absolute and proportional frontal region size increased rapidly in humans, this change was tightly correlated with corresponding size increases in other areas andwhole brain size, and with decreases in frontal neuron densities. The search for the neural basis of human cognitive uniqueness should therefore focus less on the frontal lobes in isolation and more on distributed neural networks.
Resumo:
Learned helplessness is a maladaptive response to uncontrollable stress characterized by impaired motor escape responses, reduced motivation and learning deficits. There are important individual differences in the likelihood of becoming helpless following exposure to uncontrollable stress but little is known about the neural mechanisms underlying these individual differences. Here we used structural MRI to measure gray and white matter in individuals with chronic pain, a population at high risk for helplessness due to prolonged exposure to a poorly controlled stressor (pain). Given that self-reported helplessness is predictive of treatment outcomes in chronic pain, understanding such differences might provide valuable clinical insight. We found that the magnitude of self-reported helplessness correlated with cortical thickness in the supplementary motor area (SMA) and midcingulate cortex, regions implicated in cognitive aspects of motor behavior. We then examined the white matter connectivity of these regions and found that fractional anisotropy of connected white matter tracts along the corticospinal tract was associated with helplessness and mediated the relationship between SMA cortical thickness and helplessness. These data provide novel evidence that links individual differences in the motor output pathway with perceived helplessness over a chronic and poorly controlled stressor.
Resumo:
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language–neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity.
Resumo:
It has been postulated that autism spectrum disorder is underpinned by an ‘atypical connectivity’ involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a ‘whole brain’ non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate—predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life.
Resumo:
Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.
Resumo:
Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann`s Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients` dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.