902 resultados para Nonlinear Vibration
Resumo:
Reaction separation processes, reactive distillation, chromatographic reactor, equilibrium theory, nonlinear waves, process control, observer design, asymptoticaly exact input/output-linearization
Resumo:
Kernel-Functions, Machine Learning, Least Squares, Speech Recognition, Classification, Regression
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
One of the main implications of the efficient market hypothesis (EMH) is that expected future returns on financial assets are not predictable if investors are risk neutral. In this paper we argue that financial time series offer more information than that this hypothesis seems to supply. In particular we postulate that runs of very large returns can be predictable for small time periods. In order to prove this we propose a TAR(3,1)-GARCH(1,1) model that is able to describe two different types of extreme events: a first type generated by large uncertainty regimes where runs of extremes are not predictable and a second type where extremes come from isolated dread/joy events. This model is new in the literature in nonlinear processes. Its novelty resides on two features of the model that make it different from previous TAR methodologies. The regimes are motivated by the occurrence of extreme values and the threshold variable is defined by the shock affecting the process in the preceding period. In this way this model is able to uncover dependence and clustering of extremes in high as well as in low volatility periods. This model is tested with data from General Motors stocks prices corresponding to two crises that had a substantial impact in financial markets worldwide; the Black Monday of October 1987 and September 11th, 2001. By analyzing the periods around these crises we find evidence of statistical significance of our model and thereby of predictability of extremes for September 11th but not for Black Monday. These findings support the hypotheses of a big negative event producing runs of negative returns in the first case, and of the burst of a worldwide stock market bubble in the second example. JEL classification: C12; C15; C22; C51 Keywords and Phrases: asymmetries, crises, extreme values, hypothesis testing, leverage effect, nonlinearities, threshold models
Resumo:
This paper applies recently developed heterogeneous nonlinear and linear panel unit root tests that account for cross-sectional dependence to 24 OECD and 33 non-OECD countries’ consumption-income ratios over the period 1951–2003. We apply a recently developed methodology that facilitates the use of panel tests to identify which individual cross-sectional units are stationary and which are nonstationary. This extends evidence provided in the recent literature to consider both linear and nonlinear adjustment in panel unit root tests, to address the issue of cross-sectional dependence, and to substantially expand both time-series and cross sectional dimensions of the data analysed. We find that the majority (65%) of the series are nonstationary with slightly fewer OECD countries’ (61%) series exhibiting a unit root than non-OECD countries (68%).
Resumo:
In this paper we propose a novel empirical extension of the standard market microstructure order flow model. The main idea is that heterogeneity of beliefs in the foreign exchange market can cause model instability and such instability has not been fully accounted for in the existing empirical literature. We investigate this issue using two di¤erent data sets and focusing on out- of-sample forecasts. Forecasting power is measured using standard statistical tests and, additionally, using an alternative approach based on measuring the economic value of forecasts after building a portfolio of assets. We nd there is a substantial economic value on conditioning on the proposed models.
Resumo:
We propose a nonlinear heterogeneous panel unit root test for testing the null hypothesis of unit-roots processes against the alternative that allows a proportion of units to be generated by globally stationary ESTAR processes and a remaining non-zero proportion to be generated by unit root processes. The proposed test is simple to implement and accommodates cross sectional dependence. We show that the distribution of the test statistic is free of nuisance parameters as (N, T) −! 1. Monte Carlo simulation shows that our test holds correct size and under the hypothesis that data are generated by globally stationary ESTAR processes has a better power than the recent test proposed in Pesaran [2007]. Various applications are provided.
Resumo:
We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-Ni-Nirenberg type.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.