Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion
| Contribuinte(s) |
Centre de Recerca Matemàtica |
|---|---|
| Data(s) |
01/10/2009
|
| Resumo |
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. |
| Formato |
15 209519 bytes application/pdf |
| Identificador | |
| Idioma(s) |
eng |
| Publicador |
Centre de Recerca Matemàtica |
| Relação |
Prepublicacions del Centre de Recerca Matemàtica;887 |
| Direitos |
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/) |
| Palavras-Chave | #Entropia #Equacions no lineals #Dualitat, Teoria de la (Matemàtica) #517 - Anàlisi |
| Tipo |
info:eu-repo/semantics/preprint |