954 resultados para Motion path planning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

提出了一种用于工业机器人时间最优轨迹规划及轨迹控制的新方法,它可以确保在关节位移、速度、加速度以及二阶加速度边界值的约束下,机器人手部沿笛卡尔空间中规定路径运动的时间阳短。在这种方法中,所规划的关节轨迹都采用二次多项式加余弦函数的形式,不仅可以保证各关节运动的位移、速度 、加速度连续而且还可以保证各关节运动的二阶加速度连续。采用这种方法,既可以提高机器人的工作效率又可以延长机器人的工作寿命以PUMA560机器人为对象进行了计算机仿真和机器人实验,结果表明这种方法是正确的有效的。它为工业机器人在非线性运动学约束条件下的时间最优轨迹规划及控制问题提供了一种较好的解决方案。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a new high level robot programming system. The programming system can be used to construct strategies consisting of compliant motions, in which a moving robot slides along obstacles in its environment. The programming system is referred to as high level because the user is spared of many robot-level details, such as the specification of conditional tests, motion termination conditions, and compliance parameters. Instead, the user specifies task-level information, including a geometric model of the robot and its environment. The user may also have to specify some suggested motions. There are two main system components. The first component is an interactive teaching system which accepts motion commands from a user and attempts to build a compliant motion strategy using the specified motions as building blocks. The second component is an autonomous compliant motion planner, which is intended to spare the user from dealing with "simple" problems. The planner simplifies the representation of the environment by decomposing the configuration space of the robot into a finite state space, whose states are vertices, edges, faces, and combinations thereof. States are inked to each other by arcs, which represent reliable compliant motions. Using best first search, states are expanded until a strategy is found from the start state to a global state. This component represents one of the first implemented compliant motion planners. The programming system has been implemented on a Symbolics 3600 computer, and tested on several examples. One of the resulting compliant motion strategies was successfully executed on an IBM 7565 robot manipulator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robots must successfully plan and execute tasks in the presence of uncertainty. Uncertainty arises from errors in modeling, sensing, and control. Planning in the presence of uncertainty constitutes one facet of the general motion planning problem in robotics. This problem is concerned with the automatic synthesis of motion strategies from high level task specification and geometric models of environments. In order to develop successful motion strategies, it is necessary to understand the effect of uncertainty on the geometry of object interactions. Object interactions, both static and dynamic, may be represented in geometrical terms. This thesis investigates geometrical tools for modeling and overcoming uncertainty. The thesis describes an algorithm for computing backprojections o desired task configurations. Task goals and motion states are specified in terms of a moving object's configuration space. Backprojections specify regions in configuration space from which particular motions are guaranteed to accomplish a desired task. The backprojection algorithm considers surfaces in configuration space that facilitate sliding towards the goal, while avoiding surfaces on which motions may prematurely halt. In executing a motion for a backprojection region, a plan executor must be able to recognize that a desired task has been accomplished. Since sensors are subject to uncertainty, recognition of task success is not always possible. The thesis considers the structure of backprojection regions and of task goals that ensures goal recognizability. The thesis also develops a representation of friction in configuration space, in terms of a friction cone analogous to the real space friction cone. The friction cone provides the backprojection algorithm with a geometrical tool for determining points at which motions may halt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper offers a contribution to contemporary studies of spatial planning. In particular, it problematises the relationship between neoliberal competitiveness and spatial planning. Neoliberal competitiveness is a hegemonic discourse in public policy as it (allegedly) provides the ‘path to economic nirvana’. However, commentators have critiqued its theoretical underpinnings and labelled it a ‘dangerous obsession’ for policy makers. Another set of literatures argues that spatial planning can be understood as a form of ‘neoliberal spatial governance’ and read in a ‘postpolitical’ framework that ‘privileges competitiveness’. Synthesising these debates this paper critically analyses the application and operationalisation of neoliberal competitiveness in Northern Ireland and Belfast. In focusing on this unique case study—a deeply divided society with a turbulent history—the paper takes the debate forward in arguing that rather than offering the ‘path to economic nirvana’ neoliberal competitiveness is a ‘postpolitical strategy’ and represents a ‘dangerous obsession’ for spatial planning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Manipulator motion planning is a classic problem in robotics, with a number of complete solutions available for their motion in controlled (industrial) environments. Owing to recent technological advances in the field of robotics, there has been a significant development of more complex robots with high-fidelity sensors and more computational power. One such example has been a rise in the production of humanoid robots equipped with dual-arm manipulators which require complex motion planning algorithms. Also, the technological advances have resulted in a shift from using manipulators in strictly controlled environments, to investigating the deployment of manipulators in dynamic or unknown environments. As a result, a greater emphasis has been put on the development of local motion planners, which can provide real-time solutions to these problems. Artificial Potential Fields (APFs) is one such popular local motion planning technique, which can be applied to manipulator motion planning, however, the basic algorithm is severely prone to local minima problems. Here, two modified APF-based strategies for solving the dual-arm motion planning task in unknown environments are proposed. Both techniques make use of configuration sampling and subgoal selection to assist the APFs in avoiding these local minima scenarios. Extensive simulation results are presented to validate the efficacy of the proposed methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unorganized traffic is a generalized form of travel wherein vehicles do not adhere to any predefined lanes and can travel in-between lanes. Such travel is visible in a number of countries e.g. India, wherein it enables a higher traffic bandwidth, more overtaking and more efficient travel. These advantages are visible when the vehicles vary considerably in size and speed, in the absence of which the predefined lanes are near-optimal. Motion planning for multiple autonomous vehicles in unorganized traffic deals with deciding on the manner in which every vehicle travels, ensuring no collision either with each other or with static obstacles. In this paper the notion of predefined lanes is generalized to model unorganized travel for the purpose of planning vehicles travel. A uniform cost search is used for finding the optimal motion strategy of a vehicle, amidst the known travel plans of the other vehicles. The aim is to maximize the separation between the vehicles and static obstacles. The search is responsible for defining an optimal lane distribution among vehicles in the planning scenario. Clothoid curves are used for maintaining a lane or changing lanes. Experiments are performed by simulation over a set of challenging scenarios with a complex grid of obstacles. Additionally behaviours of overtaking, waiting for a vehicle to cross and following another vehicle are exhibited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the application of a new metaheuristic algorithm to solve the transmission expansion planning problem. A simple heuristic, using a relaxed network model associated with cost perturbation, is applied to generate a set of high quality initial solutions with different topologies. The population is evolved using a multi-move path-relinking with the objective of finding minimum investment cost for the transmission expansion planning problem employing the DC representation. The algorithm is tested on the southern Brazilian system, obtaining the optimal solution for the system with better performance than similar metaheuristics algorithms applied to the same problem. ©2010 IEEE.