Theoretical and experimental research on time-optimal trajectory planning and control of industrial robots
Data(s) |
2003
|
---|---|
Resumo |
提出了一种用于工业机器人时间最优轨迹规划及轨迹控制的新方法,它可以确保在关节位移、速度、加速度以及二阶加速度边界值的约束下,机器人手部沿笛卡尔空间中规定路径运动的时间阳短。在这种方法中,所规划的关节轨迹都采用二次多项式加余弦函数的形式,不仅可以保证各关节运动的位移、速度 、加速度连续而且还可以保证各关节运动的二阶加速度连续。采用这种方法,既可以提高机器人的工作效率又可以延长机器人的工作寿命以PUMA560机器人为对象进行了计算机仿真和机器人实验,结果表明这种方法是正确的有效的。它为工业机器人在非线性运动学约束条件下的时间最优轨迹规划及控制问题提供了一种较好的解决方案。 A new method used for time-optimal trajectory planning and control of industrial robots is proposed, which can ensure the motion of a robot's hand along a specified path in Cartesian space has the minimum traveling time under the constraints on the boundary values of joint displacements, velocities, accelerations, and jerks. In this method, the planned joint trajectories are all expressed by a quadratic polynomial plus a cosinoidal function and are continuous not only in displacements, velocities, accelerations but also in jerks. By using the method, a robot's working efficiency can be raised and its life span can be extended. The results of computer simulation and experiment with a Unimate PUMA 560 type robot proves that this method is correct and effective. It provides a better solution to the problem of industrial robot's time-optimal trajectory planning and control under the nonlinear kinematical constraints.<br /> |
Identificador | |
Idioma(s) |
中文 |
Palavras-Chave | #industrial robot #time-optimal trajectory planning #trajectory control #quadratic polynomial #cosinoidal function #optimization algorithm |
Tipo |
期刊论文 |