228 resultados para Molekulare Selbstorganisation
Resumo:
Herz-Kreislauf-Erkrankungen zählen weltweit zu den Hauptursachen, die zu frühzeitigem Tod führen. Pathophysiologisch liegt eine Gefäßwandverdickung durch Ablagerung arteriosklerotischer Plaques (Arteriosklerose) vor. Die molekulare Bildgebung mit den nuklearmedizinischen Verfahren SPECT und PET zielt darauf ab, minderperfundierte Myokardareale zu visualisieren, um den Krankheitsverlauf durch frühzeitige Therapie abschwächen zu können. Routinemäßig eingesetzt werden die SPECT-Perfusionstracer [99mTc]Sestamibi und [99mTc]Tetrofosmin. Zum Goldstandard für die Quantifizierung der Myokardperfusion werden allerdings die PET-Tracer [13N]NH3 und [15O]H2O, da eine absolute Bestimmung des Blutflusses in mL/min/g sowohl in der Ruhe als auch bei Belastung möglich ist. 2007 wurde [18F]Flurpiridaz als neuer Myokardtracer vorgestellt, dessen Bindung an den MC I sowohl in Ratten, Hasen, Primaten als auch in ersten klinischen Humanstudien eine selektive Myokardaufnahme zeigte. Um eine Verfügbarkeit des Radionuklids über einen Radionuklidgenerator gewährleisten zu können, sollten makrozyklische 68Ga-Myokard-Perfusionstracer auf Pyridaben-Basis synthetisiert und evaluiert werden. Die neue Tracer-Klasse setzte sich aus dem makrozyklischen Chelator, einem Linker und dem Insektizid Pyridaben als Targeting-Vektor zusammen. Struktur-Affinitätsbeziehungen konnten auf Grund von Variation des Linkers (Länge und Polarität), der Komplexladung (neutral und einfach positiv geladen), des Chelators (DOTA, NODAGA, DO2A) sowie durch einen Multivalenzansatz (Monomer und Dimer) aufgestellt werden. Insgesamt wurden 16 neue Verbindungen synthetisiert. Ihre 68Ga-Markierung wurde hinsichtlich pH-Wert, Temperatur, Vorläufermenge und Reaktionszeit optimiert. Die DOTA/NODAGA-Pyridaben-Derivate ließen sich mit niedrigen Substanzmengen (6 - 25 nmol) in 0,1 M HEPES-Puffer (pH 3,4) bei 95°C innerhalb 15 min mit Ausbeuten > 95 % markieren. Für die DO2A-basierenden Verbindungen bedurfte es einer mikrowellengestützen Markierung (300 W, 1 min, 150°C), um vergleichbare Ausbeuten zu erzielen. Die in vitro-Stabilitätstests aller Verbindungen erfolgten in EtOH, NaCl und humanem Serum. Es konnten keine Instabilitäten innerhalb 80 min bei 37°C festgestellt werden. Unter Verwendung der „shake flask“-Methode wurden die Lipophilien (log D = -1,90 – 1,91) anhand des Verteilungs-quotienten in Octanol/PBS-Puffer ermittelt. Die kalten Referenzsubstanzen wurden mit GaCl3 hergestellt und zur Bestimmung der IC50-Werte (34,1 µM – 1 µM) in vitro auf ihre Affinität zum MC I getestet. In vivo-Evaluierungen erfolgten mit den zwei potentesten Verbindungen [68Ga]VN160.MZ und [68Ga]VN167.MZ durch µ-PET-Aufnahmen (n=3) in gesunden Ratten über 60 min. Um die Organverteilung ermitteln zu können, wurden ex vivo-Biodistributionsstudien (n=3) vorgenommen. Sowohl die µ-PET-Untersuchungen als auch die Biodistributionsstudien zeigten, dass es bei [68Ga]VN167.MZ zwar zu einer Herzaufnahme kam, die jedoch eher perfusionsabhängig ist. Eine Retention des Tracers im Myokard konnte in geringem Umfang festgestellt werden.
Resumo:
In dieser Arbeit werden formstabile, amphiphile, oberflächenstrukturierte Polyphenylendendrimere (PPDs) mit verschiedenen Oberflächenpolaritäten beschrieben. Die physikalisch-chemischen Eigenschaften dieser Makromoleküle wurden studiert, welche ein gutes Verständnis der Nanoumgebung amphiphiler PPDs lieferten. Auch lichtinduzierte Polaritätsänderung wurde untersucht. Mit dem Konzept einer gleichmäßigen Verteilung polarer Bereiche auf der Peripherie hydrophober PPPs gelang es, Transportsysteme für Fettsäuren und Zytostatika zu erzeugen, welche charakteristische Merkmale natürlicher Transportproteine wie Albumin in sich vereinen. Hierzu zählen eine stabile dreidimensionale Form, die Ausbildung von Bindungstaschen sowie eine definierte strukturierte Oberfläche aus hydrophilen und hydrophoben Bereichen. Die Verfügbarkeit von lipophilen Bindungstaschen übertrifft sogar die des Albumins. Im Gegensatz zu Polymeren kann die Wirkstoffaufnahme bei PPDs exakt bestimmt werden. Die Anpassung der peripheren Gruppen beeinflusst den zellulären Aufnahmemechanismus. Es konnten effiziente Zellaufnahmen in A549-Zellen sowie der Transport und die intrazelluläre Freisetzung von Doxorubicin erreicht werden. Manche PPDs bieten eine Größe und Architektur, die es ermöglicht, Endothelzellen des Gehirns zu durchdringen. Es wurde auch der andere Extremfall untersucht, indem alle polaren Gruppen auf einer Hemisphäre akkumuliert wurden. Zur Darstellung solcher Janus-Dendrimere wurde ein neues Synthesekonzept herausgearbeitet und die erhaltenen Janus-Dendrimere mittels Lichtstreuung untersucht, wobei definierte perlenschnurartige Aggregate gefunden wurden. Weiterhin wurden semifluorierte Amphiphile vorgestellt, welche die Möglichkeit zur Selbstorganisation durch Nanophasenseparation bieten.
Resumo:
The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.
Resumo:
In der vorliegenden Arbeit wurde gezeigt, wie man das Potential nanopartikulärer Systeme, die vorwiegend via Miniemulsion hergestellt wurden, im Hinblick auf „Drug Delivery“ ausnutzen könnte, indem ein Wirkstoffmodell auf unterschiedliche Art und Weise intrazellulär freigesetzt wurde. Dies wurde hauptsächlich mittels konfokaler Laser-Raster-Mikrokopie (CLSM) in Kombination mit dem Bildbearbeitungsprogramm Volocity® analysiert.rnPBCA-Nanokapseln eigneten sich besonders, um hydrophile Substanzen wie etwa Oligonukleotide zu verkapseln und sie so auf ihrem Transportweg in die Zellen vor einem etwaigen Abbau zu schützen. Es konnte eine Freisetzung der Oligonukleotide in den Zellen aufgrund der elektrostatischen Anziehung des mitochondrialen Membranpotentials nachgewiesen werden. Dabei war die Kombination aus Oligonukleotid und angebundenem Cyanin-Farbstoff (Cy5) an der 5‘-Position der Oligonukleotid-Sequenz ausschlaggebend. Durch quantitative Analysen mittels Volocity® konnte die vollständige Kolokalisation der freigesetzten Oligonukleotide an Mitochondrien bewiesen werden, was anhand der Kolokalisationskoeffizienten „Manders‘ Coefficients“ M1 und M2 diskutiert wurde. Es konnte ebenfalls aufgrund von FRET-Studien doppelt markierter Oligos gezeigt werden, dass die Oligonukleotide weder beim Transport noch bei der Freisetzung abgebaut wurden. Außerdem wurde aufgeklärt, dass nur der Inhalt der Nanokapseln, d. h. die Oligonukleotide, an Mitochondrien akkumulierte, das Kapselmaterial selbst jedoch in anderen intrazellulären Bereichen aufzufinden war. Eine Kombination aus Cyanin-Farbstoffen wie Cy5 mit einer Nukleotidsequenz oder einem Wirkstoff könnte also die Basis für einen gezielten Wirkstofftransport zu Mitochondrien liefern bzw. die Grundlage schaffen, eine Freisetzung aus Kapseln ins Zytoplasma zu gewährleisten.rnDer vielseitige Einsatz der Miniemulsion gestattete es, nicht nur Kapseln sondern auch Nanopartikel herzustellen, in welchen hydrophobe Substanzen im Partikelkern eingeschlossen werden konnten. Diese auf hydrophobe Wechselwirkungen beruhende „Verkapselung“ eines Wirkstoffmodells, in diesem Fall PMI, wurde bei PDLLA- bzw. PS-Nanopartikeln ausgenutzt, welche durch ein HPMA-basiertes Block-Copolymer stabilisiert wurden. Dabei konnte gezeigt werden, dass das hydrophobe Wirkstoffmodell PMI innerhalb kürzester Zeit in die Zellen freigesetzt wurde und sich in sogenannte „Lipid Droplets“ einlagerte, ohne dass die Nanopartikel selbst aufgenommen werden mussten. Daneben war ein intrazelluläres Ablösen des stabilisierenden Block-Copolymers zu verzeichnen, welches rn8 h nach Partikelaufnahme erfolgte und ebenfalls durch Analysen mittels Volocity® untermauert wurde. Dies hatte jedoch keinen Einfluss auf die eigentliche Partikelaufnahme oder die Freisetzung des Wirkstoffmodells. Ein großer Vorteil in der Verwendung des HPMA-basierten Block-Copolymers liegt darin begründet, dass auf zeitaufwendige Waschschritte wie etwa Dialyse nach der Partikelherstellung verzichtet werden konnte, da P(HPMA) ein biokompatibles Polymer ist. Auf der anderen Seite hat man aufgrund der Syntheseroute dieses Block-Copolymers vielfältige Möglichkeiten, Funktionalitäten wie etwa Fluoreszenzmarker einzubringen. Eine kovalente Anbindung eines Wirkstoffs ist ebenfalls denkbar, welcher intrazellulär z. B. aufgrund von enzymatischen Abbauprozessen langsam freigesetzt werden könnte. Somit bietet sich die Möglichkeit mit Nanopartikeln, die durch HPMA-basierte Block-Copolymere stabilisiert wurden, gleichzeitig zwei unterschiedliche Wirkstoffe in die Zellen zu bringen, wobei der eine schnell und der zweite über einen längeren Zeitraum hinweg (kontrolliert) freigesetzt werden könnte.rnNeben Nanokapseln sowie –partikeln, die durch inverse bzw. direkte Miniemulsion dargestellt wurden, sind auch Nanohydrogelpartikel untersucht worden, die sich aufgrund von Selbstorganisation eines amphiphilen Bock-Copolymers bildeten. Diese Nanohydrogelpartikel dienten der Komplexierung von siRNA und wurden hinsichtlich ihrer Anreicherung in Lysosomen untersucht. Aufgrund der Knockdown-Studien von Lutz Nuhn konnte ein Unterschied in der Knockdown-Effizienz festgestellt werden, je nach dem, ob 100 nm oder 40 nm große Nanohydrogelpartikel verwendet wurden. Es sollte festgestellt werden, ob eine größenbedingte, unterschiedlich schnelle Anreicherung dieser beiden Partikel in Lysosomen erfolgte, was die unterschiedliche Knockdown-Effizienz erklären könnte. CLSM-Studien und quantitative Kolokalisationsstudien gaben einen ersten Hinweis auf diese Größenabhängigkeit. rnBei allen verwendeten nanopartikulären Systemen konnte eine Freisetzung ihres Inhalts gezeigt werden. Somit bieten sie ein großes Potential als Wirkstoffträger für biomedizinische Anwendungen.rn
Resumo:
In the early 20th century, Gouy, Chapman, and Stern developed a theory to describe the capacitance and the spatial ion distribution of diluted electrolytes near an electrode. After a century of research, considerable progress has been made in the understanding of the electrolyte/electrode interface. However, its molecular-scale structure and its variation with an applied potential is still under debate. In particular for room-temperature ionic liquids, a new class of solventless electrolytes, the classical theories for the electrical double layer are not applicable. Recently, molecular dynamics simulations and phenomenological theories have attempted to explain the capacitance of the ionic liquid/electrode interface with the molecular-scale structure and dynamics of the ionic liquid near the electrode. rnHowever, experimental evidence is very limited. rnrnIn the presented study, the ion distribution of an ionic liquid near an electrode and its response to applied potentials was examined with sub-molecular resolution. For this purpose, a new sample chamber was constructed, allowing in situ high energy X-ray reflectivity experiments under potential control, as well as impedance spectroscopy measurements. The combination of structural information and electrochmical data provided a comprehensive picture of the electric double layer in ionic liquids. Oscillatory charge density profiles were found, consisting of alternating anion- and cation-enriched layers at both, cathodic and anodic, potentials. This structure was shown to arise from the same ion-ion correlations dominating the liquid bulk structure that were observed as a distinct X-ray diffraction peak. Therefore, existing physically motivated models were refined and verified by comparison with independent measurements. rnrnThe relaxation dynamics of the interfacial structure upon potential variation were studied by time resolved X-ray reflectivity experiments with sub-millisecond resolution. The observed relaxation times during charging/discharging are consistent with the impedance spectroscopy data revealing three processes of vastly different characteristic time-scales. Initially, the ion transport normal to the interface happens on a millisecond-scale. Another 100-millisecond-scale process is associated with molecular reorientation of electrode-adsorbed cations. Further, a minute-scale relaxation was observed, which is tentatively assigned to lateral ordering within the first layer.
Resumo:
Im Rahmen dieser Dissertation wurden quantenchemische Untersuchungen zum Phänomen des elektronischen Energietransfers durchgeführt. Zum einen wurden theoretische Modelle zur Berücksichtigung temperaturabhängiger Elektron-Phonon-Kopplung in vibronischen Spektren ausgearbeitet und numerischen Tests unterzogen. Zum anderen erfolgte die Bestimmung molekularer Eigenschaften bichromophorer Systeme unter Anwendung etablierter Rechenmethoden. Im Fokus stehen das Zusammenspiel elektronischer Kopplung und statischer Unordnung sowie Energietransferzeiten und der Einfluss molekularer Brücken in Dimeren auf die Kopplung. Da sich elektronischer Energietransfer spektroskopisch nachweisen lässt, wurden temperaturabhängige Simulationen der Linienform von vibronischen Übergängen, die an ein Wärmebad ankoppeln, durchgeführt. Die erforderliche Antwortfunktion zur Bestimmung der spektralen Linienform kann aus einer Kumulantenentwicklung und alternativ aus der Multi-Level Redfieldtheorie abgeleitet werden. Statt der genäherten Schwingungsstruktur des Brownschen Oszillatormodells wurde eine explizit berechnete Zustandsdichte als Ausgangspunkt verwendet. Sowohl reine Elektron-Phonon- als auch Schwingung-Phonon-Kopplung werden für verschiedene Spektraldichten der Badmoden diskutiert. Im Zuge eines Kooperationsprojekts führten wir Untersuchungen zur elektronischen Kopplung an einer homologen Reihe von Rylendimeren mit unterschiedlichen Brückenlängen durch. Zu diesem Zweck wurden Ergebnisse aus Tieftemperatureinzelmolekülmessungen und quantenchemischen Berechnungen auf Grundlage des vibronischen Kopplungsmodells herangezogen und ausgewertet. Die untersuchten Dimere zeigen einen Übergang vom Grenzfall starker Kopplung hin zu schwacher Kopplung und die mittleren Energietransferzeiten konnten in guter Übereinstimmung mit experimentellen Messwerten berechnet werden. Da eine molekulare Brücke zwischen Donor- und Akzeptoreinheit die elektronische Kopplung modifiziert, kann sie sich störend auf experimentelle Messungen auswirken. Daher wurde untersucht, ob das interchromophore Kopplungsverhalten vorwiegend durch die Polarisierbarkeit des verbrückenden Elements oder durch bindungsvermittelte Wechselwirkungen beeinflusst wird und welche Brückentypen sich folglich für experimentelle Studien eignen. Sämtliche untersuchten Brückenelemente führten zu einer Vergrößerung der elektronischen Kopplung und die Kopplungsstärke wurde maßgeblich durch brückenvermittelte Wechselwirkungen bestimmt.
Resumo:
In den vergangenen Jahren wurden einige bislang unbekannte Phänomene experimentell beobachtet, wie etwa die Existenz unterschiedlicher Prä-Nukleations-Strukturen. Diese haben zu einem neuen Verständnis von Prozessen, die auf molekularer Ebene während der Nukleation und dem Wachstum von Kristallen auftreten, beigetragen. Die Auswirkungen solcher Prä-Nukleations-Strukturen auf den Prozess der Biomineralisation sind noch nicht hinreichend verstanden. Die Mechanismen, mittels derer biomolekulare Modifikatoren, wie Peptide, mit Prä-Nukleations-Strukturen interagieren und somit den Nukleationsprozess von Mineralen beeinflussen könnten, sind vielfältig. Molekulare Simulationen sind zur Analyse der Formation von Prä-Nukleations-Strukturen in Anwesenheit von Modifikatoren gut geeignet. Die vorliegende Arbeit beschreibt einen Ansatz zur Analyse der Interaktion von Peptiden mit den in Lösung befindlichen Bestandteilen der entstehenden Kristalle mit Hilfe von Molekular-Dynamik Simulationen.rnUm informative Simulationen zu ermöglichen, wurde in einem ersten Schritt die Qualität bestehender Kraftfelder im Hinblick auf die Beschreibung von mit Calciumionen interagierenden Oligoglutamaten in wässrigen Lösungen untersucht. Es zeigte sich, dass große Unstimmigkeiten zwischen etablierten Kraftfeldern bestehen, und dass keines der untersuchten Kraftfelder eine realistische Beschreibung der Ionen-Paarung dieser komplexen Ionen widerspiegelte. Daher wurde eine Strategie zur Optimierung bestehender biomolekularer Kraftfelder in dieser Hinsicht entwickelt. Relativ geringe Veränderungen der auf die Ionen–Peptid van-der-Waals-Wechselwirkungen bezogenen Parameter reichten aus, um ein verlässliches Modell für das untersuchte System zu erzielen. rnDas umfassende Sampling des Phasenraumes der Systeme stellt aufgrund der zahlreichen Freiheitsgrade und der starken Interaktionen zwischen Calciumionen und Glutamat in Lösung eine besondere Herausforderung dar. Daher wurde die Methode der Biasing Potential Replica Exchange Molekular-Dynamik Simulationen im Hinblick auf das Sampling von Oligoglutamaten justiert und es erfolgte die Simulation von Peptiden verschiedener Kettenlängen in Anwesenheit von Calciumionen. Mit Hilfe der Sketch-Map Analyse konnten im Rahmen der Simulationen zahlreiche stabile Ionen-Peptid-Komplexe identifiziert werden, welche die Formation von Prä-Nukleations-Strukturen beeinflussen könnten. Abhängig von der Kettenlänge des Peptids weisen diese Komplexe charakteristische Abstände zwischen den Calciumionen auf. Diese ähneln einigen Abständen zwischen den Calciumionen in jenen Phasen von Calcium-Oxalat Kristallen, die in Anwesenheit von Oligoglutamaten gewachsen sind. Die Analogie der Abstände zwischen Calciumionen in gelösten Ionen-Peptid-Komplexen und in Calcium-Oxalat Kristallen könnte auf die Bedeutung von Ionen-Peptid-Komplexen im Prozess der Nukleation und des Wachstums von Biomineralen hindeuten und stellt einen möglichen Erklärungsansatz für die Fähigkeit von Oligoglutamaten zur Beeinflussung der Phase des sich formierenden Kristalls dar, die experimentell beobachtet wurde.
Resumo:
Hintergrund: Miniaturisierung ist ein häufig beobachtetes Phänomen bei Pflanzen in arktisch-alpinen Lebensräumen und wird als Anpassung an niedrige Jahresmitteltemperaturen und eine kurze Vegetationsperiode interpretiert. Ziele: In der vorliegenden Arbeit wird im Petasites-Clade (Petasites Mill., Endocellion Turcz. ex Herder, Homogyne Cass., Tussilago L.; Asteraceae) und in Soldanella (Primulaceae) die Evolution der Miniaturisierung arktisch-alpiner Arten untersucht. Zudem wird innerhalb von Homogyne untersucht, ob unterschiedliche edaphische Präferenz von H. alpina (variabel) und H. discolor (kalkliebend) genetisch fixiert ist. rnMethoden: Molekulare Phylogenien des Petasites-Clades und von Soldanella wurden mit nukleären und plastidären Markern erstellt, und mit den in den Alpen vorkommenden Soldanella-Arten wurde zudem eine Fingerprint-Studie (AFLPs) gemacht. Zur Datierung der Diversifizierungsereignisse im Petasites-Clade diente eine molekulare Uhr, und die Evolution von Miniaturisierung wurde rekonstruiert. Mit H. alpina und H. discolor wurde ein vergleichendes Kulturexperiment durchgeführt.rnErgebnisse: Miniaturisierung entstand mehrere Male unabhängig voneinander in den arktisch-alpinen Vertretern des Petasites-Clade, aber nicht alle arktisch-alpinen Arten sind klein. Das Alter der arktisch-alpinen Arten deutet darauf hin, dass diese Taxa ihren Ursprung in der arkto-tertiären Flora haben. In Soldanella sind reduzierte Blütenmorphologie sowie Kleinwüchsigkeit der beiden alpinen Arten zweimal parallel entstanden. Homogyne alpina und H. discolor zeigen keine edaphischen Unterschiede hinsichtlich des Keimverhaltens, aber in Kultur zeigt sich, dass die Präferenz von H. discolor für Kalk wahrscheinlich genetisch fixiert ist.rnSchlussfolgerungen: Miniaturisierung von Pflanzen in größerer Höhe und höherer geographischer Breite kann in der Regel beobachtet werden. Allerdings kann die Evolution arktisch-alpiner Arten auch durch Faktoren wie Nährstoffverfügbarkeit, Konkurrenz und Störung beeinflusst werden, die dem Effekt der Temperatur entgegenwirken, so dass nicht alle Pflanzen in arktisch-alpinen Habitaten klein sind. Blütenmorphologische Reduktion in Soldanella kann als Anpassung an einen höheren Grad an Selbstbestäubung interpretiert werden, um eine geringere Bestäuberaktivität im alpinen Lebensraum zu kompensieren.
Resumo:
Glioblastoma multiforme (GBM) is the most common and most aggressive astrocytic tumor of the central nervous system (CNS) in adults. The standard treatment consisting of surgery, followed by a combinatorial radio- and chemotherapy, is only palliative and prolongs patient median survival to 12 to 15 months. The tumor subpopulation of stem cell-like glioma-initiating cells (GICs) shows resistance against radiation as well as chemotherapy, and has been suggested to be responsible for relapses of more aggressive tumors after therapy. The efficacy of immunotherapies, which exploit the immune system to specifically recognize and eliminate malignant cells, is limited due to strong immunosuppressive activities of the GICs and the generation of a specialized protective microenvironment. The molecular mechanisms underlying the therapy resistance of GICs are largely unknown. rnThe first aim of this study was to identify immune evasion mechanisms in GICs triggered by radiation. A model was used in which patient-derived GICs were treated in vitro with fractionated ionizing radiation (2.5 Gy in 7 consecutive passages) to select for a more radio-resistant phenotype. In the model cell line 1080, this selection process resulted in increased proliferative but diminished migratory capacities in comparison to untreated control GICs. Furthermore, radio-selected GICs downregulated various proteins involved in antigen processing and presentation, resulting in decreased expression of MHC class I molecules on the cellular surface and diminished recognition potential by cytotoxic CD8+ T cells. Thus, sub-lethal fractionated radiation can promote immune evasion and hamper the success of adjuvant immunotherapy. Among several immune-associated proteins, interferon-induced transmembrane protein 3 (IFITM3) was found to be upregulated in radio-selected GICs. While high expression of IFITM3 was associated with a worse overall survival of GBM patients (TCGA database) and increased proliferation and migration of differentiated glioma cell lines, a strong contribution of IFITM3 to proliferation in vitro as well as tumor growth and invasiveness in a xenograft model could not be observed. rnMultiple sclerosis (MS) is the most common autoimmune disease of the CNS in young adults of the Western World, which leads to progressive disability in genetically susceptible individuals, possibly triggered by environmental factors. It is assumed that self-reactive, myelin-specific T helper cell 1 (Th1) and Th17 cells, which have escaped the control mechanisms of the immune system, are critical in the pathogenesis of the human disease and its animal model experimental autoimmune encephalomyelitis (EAE). It was observed that in vitro differentiated interleukin 17 (IL-17) producing Th17 cells co-expressed the Th1-phenotypic cytokine Interferon-gamma (IFN-γ) in combination with the two respective lineage-associated transcription factors RORγt and T-bet after re-isolation from the CNS of diseased mice. Pathogenic molecular mechanisms that render a CD4+ T cell encephalitogenic have scarcely been investigated up to date. rnIn the second part of the thesis, whole transcriptional changes occurring in in vitro differentiated Th17 cells in the course of EAE were analyzed. Evaluation of signaling networks revealed an overrepresentation of genes involved in communication between the innate and adaptive immune system and metabolic alterations including cholesterol biosynthesis. The transcription factors Cebpa, Fos, Klf4, Nfatc1 and Spi1, associated with thymocyte development and naïve T cells were upregulated in encephalitogenic CNS-isolated CD4+ T cells, proposing a contribution to T cell plasticity. Correlation of the murine T-cell gene expression dataset to putative MS risk genes, which were selected based on their proximity (± 500 kb; ensembl database, release 75) to the MS risk single nucleotide polymorphisms (SNPs) proposed by the most recent multiple sclerosis GWAS in 2011, revealed that 67.3% of the MS risk genes were differentially expressed in EAE. Expression patterns of Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7, and Thada were confirmed in independent experiments, suggesting a contribution to T cell pathogenicity. Functional analysis of Nfatc1 revealed that Nfatc1-deficient CD4+ T cells were restrained in their ability to induce clinical signs of EAE. Nfatc1-deficiency allowed proper T cell activation, but diminished their potential to fully differentiate into Th17 cells and to express high amounts of lineage cytokines. As the inducible Nfatc1/αA transcript is distinct from the other family members, it could represent an interesting target for therapeutic intervention in MS.rn
Resumo:
Summary Antibody-based cancer therapies have been successfully introduced into the clinic and have emerged as the most promising therapeutics in oncology. The limiting factor regarding the development of therapeutical antibody vaccines is the identification of tumor-associated antigens. PLAC1, the placenta-specific protein 1, was categorized for the first time by the group of Prof. Sahin as such a tumor-specific antigen. Within this work PLAC1 was characterized using a variety of biochemical methods. The protein expression profile, the cellular localization, the conformational state and especially the interacting partners of PLAC1 and its functionality in cancer were analyzed. Analysis of the protein expression profile of PLAC1 in normal human tissue confirms the published RT-PCR data. Except for placenta no PLAC1 expression was detectable in any other normal human tissue. Beyond, an increased PLAC1 expression was detected in several cancer cell lines derived of trophoblastic, breast and pancreatic lineage emphasizing its properties as tumor-specific antigen. rnThe cellular localization of PLAC1 revealed that PLAC1 contains a functional signal peptide which conducts the propeptide to the endoplasmic reticulum (ER) and results in the secretion of PLAC1 by the secretory pathway. Although PLAC1 did not exhibit a distinct transmembrane domain, no unbound protein was detectable in the cell culture supernatant of overexpressing cells. But by selective isolation of different cellular compartments PLAC1 was clearly enriched within the membrane fraction. Using size exclusion chromatography PLAC1 was characterized as a highly aggregating protein that forms a network of high molecular multimers, consisting of a mixture of non-covalent as well as covalent interactions. Those interactions were formed by PLAC1 with itself and probably other cellular components and proteins. Consequently, PLAC1 localize outside the cell, where it is associated to the membrane forming a stable extracellular coat-like structure.rnThe first mechanistic hint how PLAC1 promote cancer cell proliferation was achieved identifying the fibroblast growth factor FGF7 as a specific interacting partner of PLAC1. Moreover, it was clearly shown that PLAC1 as well as FGF7 bind to heparin, a glycosaminoglycan of the ECM that is also involved in FGF-signaling. The participation of PLAC1 within this pathway was approved after co-localizing PLAC1, FGF7 and the FGF7 specific receptor (FGFR2IIIb) and identifying the formation of a trimeric complex (PLAC1, FGF7 and the specific receptor FGFR2IIIb). Especially this trimeric complex revealed the role of PLAC1. Binding of PLAC1 together with FGF7 leads to the activation of the intracellular tyrosine kinase of the FGFR2IIIb-receptor and mediate the direct phosphorylation of the AKT-kinase. In the absence of PLAC1, no FGF7 mediated phosphorylation of AKT was observed. Consequently the function of PLAC1 was clarified: PLAC1 acts as a co-factor by stimulating proliferation by of the FGF7-FGFR2 signaling pathway.rnAll together, these novel biochemical findings underline that the placenta specific protein PLAC1 could be a new target for cancer immunotherapy, especially considering its potential applicability for antibody therapy in tumor patients.
Resumo:
This thesis reports on the experimental realization of nanofiber-based spectroscopy of organic molecules. The light guided by subwavelength diameter optical nanfibers exhibits a pronounced evanescent field surrounding the fiber which yields high excitation and emission collection efficiencies for molecules on or near the fiber surface.rnThe optical nanofibers used for the experiments presented in this thesis are realized as thernsub-wavelength diameter waist of a tapered optical fiber (TOF). The efficient transfer of thernlight from the nanofiber waist to the unprocessed part of the TOF depends critically on therngeometric shape of the TOF transitions which represent a nonuniformity of the TOF. Thisrnnonuniformity can cause losses due to coupling of the fundamental guided mode to otherrnmodes which are not guided by the taper over its whole length. In order to quantify the lossrnfrom the fundamental mode due to tapering, I have solved the coupled local mode equationsrnin the approximation of weak guidance for the three layer system consisting of fiber core andrncladding as well as the surrounding vacuum or air, assuming the taper shape of the TOFsrnused for the experiments presented in this thesis. Moreover, I have empirically studied therninfluence of the TOF geometry on its transmission spectra and, based on the results, I haverndesigned a nanofiber-waist TOF with broadband transmission for experiments with organicrnmolecules.rnAs an experimental demonstration of the high sensitivity of nanofiber-based surface spectroscopy, I have performed various absorption and fluorescence spectroscopy measurements on the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). The measured homogeneous and inhomogeneous broadening of the spectra due to the interaction of the dielectric surface of the nanofiber with the surface-adsorbed molecules agrees well with the values theoretically expected and typical for molecules on surfaces. Furthermore, the self-absorption effects due to reasorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist have been analyzed and quantified. With time-resolved measurements, the reorganization of PTCDA molecules to crystalline films and excimers can be observed and shown to be strongly catalyzed by the presence of water on the nanofiber surface. Moreover, the formation of charge-transfer complexes due to the interaction with localized surface defects has been studied. The collection efficiency of the molecular emission by the guided fiber mode has been determined by interlaced measurements of absorption and fluorescence spectra to be about 10% in one direction of the fiber.rnThe high emission collection efficiency makes optical nanofibers a well-suited tool for experiments with dye molecules embedded in small organic crystals. As a first experimental realization of this approach, terrylene-doped para-terphenyl crystals attached to the nanofiber-waist of a TOF have been studied at cryogenic temperatures via fluorescence and fluorescence excitation spectroscopy. The statistical fine structure of the fluorescence excitation spectrum for a specific sample has been observed and used to give an estimate of down to 9 molecules with center frequencies within one homogeneous width of the laser wavelength on average for large detunings from resonance. The homogeneous linewidth of the transition could be estimated to be about 190MHz at 4.5K.
Resumo:
Wein ist eine komplexe Lösung bestehend aus verschiedensten Komponenten wie Alkohol, Polyphenolen, Polysacchariden, Sulfiten und auch Proteinen. Auch wenn Proteine nur in geringen Mengen im Wein enthalten sind, beeinflussen sie die Qualität maßgeblich. Hier ist zum einen deren potentielle Unverträglichkeit bis hin zur Allergie zu nennen, und zum anderen der Einfluss der Weinproteine auf die Trübung. Im Rahmen einer epidemiologischen Studie der Arbeitsgruppe Fronk/Decker wurde festgestellt, dass es in der Weinregion Mainz ein starkes Interesse gibt die Ursache einer Weinunverträglichkeit zu untersuchen. Für weiterführende Untersuchungen wurde im Rahmen meiner Arbeit das Lipid Transfer Protein (LTP), welches als einziges Allergen der Traube bekannt ist, aus Trauben und Wein in hohem Reinheitsgrad isoliert. Es konnte gezeigt werden, dass dessen Struktur bei der Weinherstellung nicht maßgeblich verändert wurde. In einer klinischen Studie mit 29 Probanden wurde die potentielle Allergenität von Weinproteinen, im Besonderen des LTPs untersucht. Allerdings konnte bei den untersuchten Probanden keine echte IgE-Antikörper-vermittelte Allergie auf das LTP nachgewiesen werden. Daher wird die Ursache der beschriebenen Unverträglichkeiten bei anderen Weininhaltsstoffen oder auch auf pollenassoziierten Kreuzreaktionen vermutet. Bei der Entstehung einer Weintrübung sind zahlreiche Inhaltstoffe beteiligt. Die Rolle der Proteine ist in diesem Zusammenhang noch nicht abschließend geklärt. In dieser Arbeit wurde die Komplexität der Proteinzusammensetzung in Abhängigkeit von Lage, Jahrgang, Rebsorte sowie Behandlungsmaßnahmen gezeigt. Hinsichtlich der Stabilisierung und Trübungsrelevanz der Weinproteine konnte mittels biochemischer, bioinformatischer und biophysikalischer Methoden gezeigt werden, dass nur ein Teil der im Wein enthaltenen Thaumatin-ähnlichen Proteine und Chitinasen an der Trubbildung beteiligt sind. Die Invertase hingegen denaturiert erst ab einer Temperatur von ca. 83 °C und aggregiert in der Trübung. Somit führt dieses Protein bei Wärmetests zu Bentonitbedarfsermittlung in diesem Temperaturbereich zu einer Überschätzung. Die Versuche zur temperaturabhängigen Aggregation von Proteinen zeigen, wie wichtig die Berücksichtigung der Umgebungsfaktoren bei der Trubbildung ist. So konnten unterschiedliche Wechselwirkungen im Puffer- und realen Weinsystem von potentiell trübungsstabilisierenden Polysacchariden mit den Weinproteinen detektiert werden. Für das Arabinogalactan beispielsweise wurde in den Versuchen im Weinsystem eine destabilisierende Wirkung gefunden, während es bei den Versuchen im Puffersystem eine positive Wirkung auf die Stabilisierung der Probe zeigte. Es zeigte sich, dass die verschiedenen Weininhaltsstoffe in einer komplexen Wechselwirkung zueinander stehen und somit eine molekulare Interpretation erschweren.
Resumo:
Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.
Resumo:
Die vorliegende Arbeit umfasst die Synthese und Charakterisierung phosphonsäurehaltiger, organischer Kristalle als ionenleitende Verbindungen in Brennstoffzellen-Anwendungen. Sie zielt dabei einerseits auf die Darstellung von protonenleitenden Polyphenylenverbindungen und deren Verwendung als Linker für den Aufbau protonenleitender Aluminium-Phosphonat-Netzwerke ab und behandelt andererseits die Einführung stark polarer Phosphonsäuregruppen in einen diskreten Nanographenkern sowie deren Einfluss auf die ionen- und elektronenleitenden Eigenschaften, um diese als gemischt-leitende Kompatibilisatoren an der isolierenden Elektrode/ Membran-Grenzfläche in einer Brennstoffzelle zu verwenden. Am Beispiel eines phosphonsäurefunktionalisierten, phenylenisch-expandierten Hexaphenylbenzols konnte ein solvothermisch stabiler Protonenleiter mit einer Selbstorganisation in kolumnare, supramolekulare Strukturen und hoher, temperaturunabhängiger Leitfähigkeit mit dominierendem Grotthuss-Anteil präsentiert werden. Durch einen Wechsel dieser 1D-radialen Phosphonsäureanordnung in der Molekülhülle hin zu 2D- und 3D-H2PO3-funktionalisierten, dendritischen Stäbchen- bzw. Kugelstrukturen konnte gezeigt werden, dass eine kolumnare Molekülanordnung jedoch kein notwendiges Kriterium für einen Grotthuss-artigen Protonentransport darstellt. Durch die mehrdimensionale Orientierung der Phosphonsäuren in der Außenhülle der Dendrimere garantieren die synthetisierten Strukturen hochaggregierte Phosphonsäurecluster, die als dichtes Säurekontinuum die eigentlichen protonenleitfähigen Kanäle darstellen und somit als entscheidendes Kriterium für das Auftreten eines Grotthuss-artigen Mechanismus definiert werden müssen. Eine signifikante Erhöhung der Leitfähigkeit konnte durch den Aufbau poröser, organisch-anorganischer Netzwerke (Al-HPB-NETs) über Komplexierung einer unterstöchiometrischen Menge an Aluminium-Kationen mit der Polyphosphonsäureverbindung Hexakis(p-phosphonatophenyl)benzol als Linkereinheit erfolgen, die anschließend mit kleinen intrinsischen Protonenleitern wie Phosphonsäure dotiert wurden. Diese dotierten Netzwerke wiesen außergewöhnliche Leitfähigkeit auf, da sie die σ-Werte des Referenzpolymers Nafion® bereits in einem Temperaturbereich oberhalb von 135°C übertrafen, aber gleichzeitig ein sehr gutes Säureretentionsverhalten von einem Gew.-% Säuredesorption über eine Immersionsdauer von 14 h gegenüber wässrigem Medium zeigten. Durch Mischen dieser Aluminiumphosphonate mit einer dotierten Polymermatrix wie PBI konnten synergistische Effekte durch zusätzliche attraktive H-Brückenbindungen zwischen molekular angebundener Phosphonsäure und mobiler H3PO4 an Hand eines signifikanten Leitfähigkeitsanstiegs für die resultierenden Membranen beobachtet werden. Die Protonenleitfähigkeit lag in diesen Materialien in dem gesamten untersuchten Temperaturbereich oberhalb von Nafion®. Durch das Einbringen der NETs in PBI konnte ebenfalls die Säureretention von PBI um etwa 9 % bei kurzen Immersionszeiten (bis 1 min) verbessert werden. Darüber hinaus wurde in der vorliegenden Arbeit die synthetische Kombination eines hydrophoben, elektronenleitenden Nanographenkerns mit einer, durch eine isolierende Peripherie getrennten, stark polaren, protonenleitenden Außenhülle realisiert. Am Beispiel von zwei phosphonsäurefunktionalisierten Triphenylenen, die sich in Länge und Planarität der gewählten Peripheriebausteine unterschieden, sollten polycyclische aromatische Kohlenwasserstoffe mit gemischt protonen- und elektronenleitenden Eigenschaften hergestellt werden, die über Impedanzspektroskopie und Vierpunktmessungen untersucht wurden. Da es sich bei der Anwendung solcher gemischtleitenden Verbindungen um grenz-flächenaktive Substanzen handelt, die das ohne verbesserte Anbindung bestehende Dielektrikum zwischen Elektrode und protonenleitender Membran überbrücken sollen, wurde die Untersuchung eines möglichen Elektronentransportes durch eine Molekülmonolage ebenfalls über kombinatorische STM- und STS-Technik durchgeführt.
Resumo:
Für die Realisierung zukünftiger Technologien, wie z.B. molekulare Elektronik, werden Strategien benötigt, um funktionale Strukturen direkt auf Oberflächen zu erzeugen. Für die Bewältigung dieser Aufgabe ist die molekulare Selbstanordnung ein äußerst vielversprechender Bottom-up-Ansatz. Hierbei ist eine der größten Herausforderungen das Zusammenspiel aus intramolekularer Wechselwirkung und der Wechselwirkung zwischen Substrat und Molekülen in ein Gleichgewicht zu bringen. Da jedoch die wirkenden Kräfte der molekularen Selbstanordnung ausschließlich reversibler Natur sind, ist eine langfristige Stabilität fragwürdig. Somit ist die kovalente Verknüpfung der gebildeten Strukturen durch Reaktionen direkt auf der Oberfläche unerlässlich, um die Stabilität der Strukturen weiter zu erhöhen. Hierzu stellt die vorliegende Arbeit eine ausführliche Studie zu molekularer Selbstanordnung und der zielgerichteten Modifikation ebensolcher Strukturen dar. Durch den Einsatz von hochauflösender Rasterkraftmikroskopie im Ultrahochvakuum, welche es erlaubt einzelne Moleküle auf Nichtleitern abzubilden, wurde der maßgebliche Einfluss von Ankerfunktionalitäten auf den Prozess der molekularen Selbstanordnung gezeigt. Des Weiteren konnte die Stabilität der selbst angeordneten Strukturen durch neue Oberflächenreaktionskonzepte entschieden verbessert werden. Der Einfluss von Ankerfunktionen, die elektrostatische Wechselwirkung zwischen Molekül und Substrat vermitteln, auf den Strukturbildungsprozess der molekularen Selbstanordnung wird eingehend durch den Vergleich eines aromatischen Moleküls und seines vierfach chlorierten Derivates gezeigt. Für diese beiden Moleküle wurde ein deutlich unterschiedliches Verhalten der Selbstanordnung beobachtet. Es wird gezeigt, dass die Fähigkeit zur Bildung selbst angeordneter, stabiler Inseln entscheidend durch die Substituenten und die Abmessungen des Moleküls beeinflusst wird. Auch wird in dieser Arbeit die erste photochemische Reaktion organischer Moleküle auf einem Isolator gezeigt. Qualitative und quantitative Ergebnisse liefern ein detailliertes Bild darüber, wie die Abmessungen des Substratgitters die Richtung der Reaktion gezielt beeinflussen. Des Weiteren wird ein allgemeines Konzept zur selektiven Stabilisierung selbstangeordneter Molekülstrukturen durch den kontrollierten Transfer von Elektronen präsentiert. Durch die gezielte Steuerung der Menge an Dotierungsatomen wird die Desorptionstemperatur der molekularen Inseln signifikant erhöht und das Desorptionsverhalten der Inseln entschieden verändert. Diese Arbeit präsentiert somit erfolgreich durchgeführte Strategien um den Prozess der molekularen Selbstanordnung zu steuern, sowie entscheidende Mechanismen um die Stabilisierung und Modifizierung von selbst angeordneten Strukturen zu gewährleisten.